Skip to main content

Statistical Parameter Identification of Analog Integrated Circuit Reverse Models

  • Conference paper
Artificial Neural Networks – ICANN 2009 (ICANN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5768))

Included in the following conference series:

  • 2137 Accesses

Abstract

We solve the manufacturing problem of identifying the model statistical parameters ensuring a satisfactory quality of analog circuits produced in a photolithographic process. We formalize it in a statistical framework as the problem of inverting the mapping from the population of the circuit production variables to the performances’ population. Both variables and performances are random. From a sample of the joint population we want to identify the statistical features of the former producing a performance distribution that satisfies the design constraints with a good preassigned probability. The key idea of the solution method we propose consists of describing the above mapping in terms of a mixture of granular functions, where each is responsible for a fuzzy set within the input-output space, hence for a cluster therein. The way of synthesizing the whole space as a mixture of these clusters is learnt directly from the examples. As a result we have an analytical form both of the mapping approximating complex Spice models in terms of polynomials in the production variables, and of the distribution law of the induced performances that allows a relatively quick and easy management of the production variables’ statistical parameters as a function of the probability with which we plan to satisfy the design constraint. We apply the method to case studies and real production data where our method outperforms current methods’ running times and accuracies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bühler, M., Koehl, J., Bickford, J., Hibbeler, J., Schlichtmann, U., Sommer, R., Pronath, M., Ripp, A.: DFM/DFY design for manufacturability and yield - influence of process variations in digital, analog and mixed-signal circuit design. In: DATE 2006, pp. 387–392 (2006)

    Google Scholar 

  2. Qu, M., Styblinski, M.: Parameter extraction for statistical IC modeling based on recursive inverse approximation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 16, 1250–1259 (1997)

    Article  Google Scholar 

  3. Koskinen, T., Cheung, P.: Statistical and behavioural modelling of analogue integrated circuits. Circuits, Devices and Systems, IEE Proceedings G 140, 171–176 (1993)

    Article  Google Scholar 

  4. Quarles, T., Pederson, D., Newton, R., Sangiovanni-Vicentelli, A., Wayne, C.: Spice (2009), http://bwrc.eecs.berkeley.edu/Classes/icbook/SPICE/

  5. McConaghy, T., Gielen, G.: Analysis of simulation-driven numerical performance modeling techniques for application to analog circuit optimization. In: Proceedings of IEEE International Symposium on Circuits and Systems (2005)

    Google Scholar 

  6. Bolt, M., Rocchi, M., Engel, J.: Realistic statistical worst-case simulations of VLSI circuits. IEEE Transactions on Semiconductor Manufacturing 4(3), 193–198 (1991)

    Article  Google Scholar 

  7. Kundert, K.S.: The Designers Guide to SPICE and SPECTRE. Kluwer Academic Publishers, Boston (1998)

    MATH  Google Scholar 

  8. Apolloni, B., Bassis, S., Malchiodi, D., Witold, P.: The Puzzle of Granular Computing. Studies in Computational Intelligence, vol. 138. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  9. Eeckelaert, T., Daems, W., Gielen, G., Sansen, W.: Generalized simulation-based posynomial model generation for analog integrated circuits. Analog Integr. Circuits Signal Process. 40, 193–203 (2004)

    Article  Google Scholar 

  10. Hershenson, M., Boyd, S., Lee, T.: Optimal design of a CMOS op-amp via geometric programming. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 20, 1–21 (2001)

    Article  Google Scholar 

  11. Apolloni, B., Bassis, S., Malchiodi, D., Pedrycz, W.: Interpolating support information granules. Neurocomputing 71, 2433–2445 (2008)

    Article  Google Scholar 

  12. Sen, A., Srivastava, M.: Regression Analysis, Theory, Methods and Applications. Springer, Heidelberg (1990)

    MATH  Google Scholar 

  13. Gunawardana, A., Byrne, W.: Convergence theorems for generalized alternating minimization procedures. Journal of Machine Learning Research 6, 2049–2073 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Apolloni, B., Bassis, S., Gaito, S., Malchiodi, D.: Appreciation of medical treatments by learning underlying functions with good confidence. Current Pharmaceutical Design 13, 1545–1570 (2007)

    Article  Google Scholar 

  15. Liu, R.Y., Parelius, J.M., Singh, K.: Multivariate analysis by data depth: Descriptive statistics, graphics and inference. The Annals of Statistics 27, 783–858 (1999)

    MathSciNet  MATH  Google Scholar 

  16. McConaghy, T., Eeckelaert, T., Gielen, G.: CAFFEINE: Template-free symbolic model generation of analog circuits via canonical form functions and genetic programming. In: DATE 2005, pp. 1530–1591 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Apolloni, B., Bassis, S., Mesiano, C., Rinaudo, S., Ciccazzo, A., Marotta, A. (2009). Statistical Parameter Identification of Analog Integrated Circuit Reverse Models. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5768. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04274-4_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04274-4_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04273-7

  • Online ISBN: 978-3-642-04274-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics