Skip to main content

Discovering Diagnostic Gene Targets and Early Diagnosis of Acute GVHD Using Methods of Computational Intelligence over Gene Expression Data

  • Conference paper
Artificial Neural Networks – ICANN 2009 (ICANN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5769))

Included in the following conference series:

Abstract

This is an application paper of applying standard methods of computational intelligence to identify gene diagnostic targets and to use them for a successful diagnosis of a medical problem - acute graft-versus-host disease (aGVHD). This is the major complication after allogeneic haematopoietic stem cell transplantation (HSCT) in which functional immune cells of donor recognize the recipient as “foreign” and mount an immunologic attack. In this paper we analyzed gene-expression profiles of 47 genes associated with allo-reactivity in 59 patients submitted to HSCT. We have applied 2 feature selection algorithms combined with 2 different classifiers to detect the aGVHD at on-set of clinical signs. This is a preliminary study and the first paper which tackles both computational and biological evidence for the involvement of a limited number of genes for diagnosis of aGVHD. Directions for further studies are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kasabov, N.: Evolving Connectionist Systems: The Knowledge Engineering Approach, 2nd edn. Springer, London (2007)

    MATH  Google Scholar 

  2. Kasabov, N., Sidorov, I.A., Dimitrov, D.S.: Computational Intelligence, Bioinformatics and Computational Biology: A Brief Overview of Methods, Problems and Perspectives. J. Comp. and Theor. Nanosc. 2(4), 473–491 (2005)

    Article  Google Scholar 

  3. Appelbaum, F.R.: Haematopoietic cell transplantation as immunotherapy. Nature 411, 385–389 (2001)

    Article  Google Scholar 

  4. Weisdorf, D.: Graft vs. Host disease: pathology, prophylaxis and therapy: GVHD overview, Best Pr. & Res. Cl. Haematology 21(2), 99–100 (2008)

    Google Scholar 

  5. Lewalle, P., Rouas, R., Martiat, P.: Allogeneic hematopoietic stem cell transplantation for malignant disease: How to prevent graft-versus-host disease without jeopardizing the graft-versus-tumor effect? Drug Discovery Today: Therapeutic Strategies — Immunological disorders and autoimmunity 3(1) (2006)

    Google Scholar 

  6. Ferrara, J.L.: Advances in the clinical management of GVHD, Best Pr. & Res. Cl. Haematology 21(4), 677–682 (2008)

    Google Scholar 

  7. Przepiorka, D., Weisdorf, D., Martin, P.: Consensus Conference on acute GVHD grading. Bone Marrow Transplanation 15, 825–828 (1995)

    Google Scholar 

  8. Paczesny, S., Levine, J.E., Braun, T.M., Ferrara, J.L.: Plasma biomarkers in Graft-versus-Host Disease: a new era? Biology of Blood and Marrow Transplantation 15, 33–38 (2009)

    Article  Google Scholar 

  9. Paczesny, S., Oleg, I.K., Thomas, M.: A biomarker panel for acute graft-versus-host disease. Blood 113, 273–278 (2009)

    Article  Google Scholar 

  10. Buzzeo, M.P., Yang, J., Casella, G., Reddy, V.: A preliminary gene expression profile of acute graft-versus-host disease. Cell Transplantation 17(5), 489–494 (2008)

    Article  Google Scholar 

  11. Langley, P.: Selection of relevant features in machine learning. In: Proceedings of AAAI Fall Symposium on Relevance, pp. 140–144 (1994)

    Google Scholar 

  12. Hall, M.A.: Correlation-based feature selection for machine learning. Ph.D. Thesis. Department of Computer Science, University of Waikato (1999)

    Google Scholar 

  13. Wang, Y., Tetko, I.V., Hall, M.A., Frank, E., Facius, A., Mayer, K.F.X., Mewes, H.W.: Computational Biology and Chemistry 29(1), 37–46 (2005)

    Google Scholar 

  14. Bishop, C.: Neural Networks for Pattern Recognition. Calderon-Press, Oxford (1995)

    MATH  Google Scholar 

  15. Kurkova, V.: Kolmogorov’s theorem and multilayer neural networks. N. Net 5, 501–506 (1992)

    Article  Google Scholar 

  16. Fogel, D.B.: An information criterion for optimal neural network selection. IEEE Tran. N.N. 490–497 (1991)

    Google Scholar 

  17. Foley Jason, J.E., Mariotti, J., Ryan, K., Eckhaus, M., Fowler, D.H.: The cell therapy of established acute graft-versus-host disease requires IL-4 and IL-10 and is abrogated by IL-2 or host-type antigen-presenting cells. Biology of Blood and Marrow Transplantation 14, 959–972 (2008)

    Article  Google Scholar 

  18. Yu, X.-Z., Liang, Y., Nurieva, R.I., Guo, F., Anasetti, C., Dong, C.: Opposing effects of ICOS on graft-versus-host disease mediated by CD4 and CD8 T cells1. The Journal of Immunology 176, 7394–7401 (2006)

    Article  Google Scholar 

  19. Hu, Y., Song, Q., Kasabov, N.: Personalized Modeling based Gene Selection for Microarray Data Analysis. In: The 15th Int. Conf. on Neuro-Information Processing, ICONIP, Auckland, New Zealand. LNCS, vol. 5506/5507. Springer, Heidelberg (2009)

    Google Scholar 

  20. Kasabov, N.: Global, local and personalised modelling and profile discovery in Bioinformatics: An integrated approach. Pattern Recognition Letters 28(6), 673–685 (2007)

    Article  MathSciNet  Google Scholar 

  21. Schliebs, S., Defoin-Platel, M., Kasabov, N.: Integrated Feature and Parameter Optimization for an Evolving Spiking Neural Network. In: Proc. of ICONIP 2008, Auckland, NZ. LNCS, vol. 5506/5507. Springer, Heidelberg (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fiasché, M., Verma, A., Cuzzola, M., Iacopino, P., Kasabov, N., Morabito, F.C. (2009). Discovering Diagnostic Gene Targets and Early Diagnosis of Acute GVHD Using Methods of Computational Intelligence over Gene Expression Data. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5769. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04277-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04277-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04276-8

  • Online ISBN: 978-3-642-04277-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics