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Autónoma de Madrid, 28049 Madrid, Spain

2 Cognodata Consulting, Calle Caracas 23, 28010 Madrid, Spain

Abstract. We introduce the Partition Negentropy Criterion (PNC) for
cluster validation. It is a cluster validity index that rewards the aver-
age normality of the clusters, measured by means of the negentropy, and
penalizes the overlap, measured by the partition entropy. The PNC is
aimed at finding well separated clusters whose shape is approximately
Gaussian. We use the new index to validate fuzzy partitions in a set of
synthetic clustering problems, and compare the results to those obtained
by the AIC, BIC and ICL criteria. The partitions are obtained by fitting
a Gaussian Mixture Model to the data using the EM algorithm. We show
that, when the real clusters are normally distributed, all the criteria are
able to correctly assess the number of components, with AIC and BIC
allowing a higher cluster overlap. However, when the real cluster distri-
butions are not Gaussian (i.e. the distribution assumed by the mixture
model) the PNC outperforms the other indices, being able to correctly
evaluate the number of clusters while the other criteria (specially AIC
and BIC) tend to overestimate it.

Key words: Clustering, Cluster validation, Mixture Model, Negentropy,
EM algorithm

1 Introduction

Cluster analysis [1] deals with the automatic partition of a data set into a finite
number of natural structures, or clusters. The elements inside a cluster must
be similar, while those belonging to different clusters must not. Clustering al-
gorithms are usually divided into crisp and fuzzy. In crisp clustering, each data
point is uniquely assigned to a single cluster. On the contrary, fuzzy cluster-
ing allows each point to belong to any of the clusters with a certain degree of
membership.

A standard approach in fuzzy clustering is model clustering, where it is as-
sumed that the observed data are generated from a mixture of probability dis-
tributions (clusters or components). The mathematical structure of these distri-
butions is assumed to be of a certain type (usually Gaussians) but the specific
parameters (e.g. means and covariances) must be found. Once the number of
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components and their parameters have been selected following some strategy,
the degree of membership of the point x with respect to the cluster c is usually
related to the probability p(c|x).

There exist different methodologies to select the parameters of the mixture
model, the most popular being the Expectation-Maximization (EM) algorithm
[2]. However, a common problem is how to determine the correct number of
components in the mixture. A different but closely related problem is how to
measure the validity of the outcomes of a particular fuzzy clustering method.
This is the subject of cluster validation [3], whose objective is to provide a
quality measure, or validity index, that allows to evaluate the results obtained
by a clustering algorithm. Many cluster validity indices have been proposed in
the literature, including geometric [4–6], probabilistic [7–9], graph theoretic [10],
and visual [11, 12] approaches.

In the context of density estimation using mixture models, different strategies
have been explored to automatically select the number of mixture components
[13–16], the most popular being the Akaike’s Information Criterion (AIC) [17]
and the Bayesian Inference Criterion (BIC) [18, 19]. The last two approaches are
based on the maximization of criteria that combine a term based on the likeli-
hood of the observations and a term that penalizes the complexity of the model.
In principle, they could also be used as validity indices in model clustering,
to compare models with different number of components and thus automati-
cally select the number of clusters. This possibility has been deeply explored
in the literature, and different indices based on these and similar criteria have
been proposed to validate clustering partitions and assess the number of com-
ponents in clustering problems using mixture models [7, 8, 20]. In particular, the
Information Completed Likelihood (ICL) [21, 22], which is essentially the BIC
criterion penalized by subtraction of the estimated partition mean entropy, has
been shown to outperform AIC and BIC when the focus is clustering rather
than density estimation. The AIC and BIC criteria do not explicitly penalize
the overlap amongst the clusters, and so they tend to overestimate the number
of cluster components when the kind of distribution followed by the real clusters
does not match the distribution assumed by the mixture model [21].

In this article we present the Partition Negentropy Criterion (PNC), a new
cluster validity index which combines a term that rewards the average normality
of the clusters and a term that penalizes the average overlap. The normality of
a cluster is computed using the negentropy, while the average overlap is mea-
sured by the partition entropy. Here we use the new index to validate Gaussian
mixtures that are fitted with the EM algorithm, and compare its performance to
the AIC, BIC and ICL criteria in a set of synthetic clustering problems. We first
check that the PNC is able to assess the correct number of components in prob-
lems where the underlying cluster distributions are Gaussian. When the Gaus-
sian clusters are highly overlapped the AIC and BIC criteria obtain a slightly
better detection rate, that is they are able to assess the number of components
under higher overlap, than the ICL and the PNC. However, in situations where
the underlying cluster distributions are not purely Gaussian, the AIC and BIC



Fuzzy Cluster Validation Using the Partition Negentropy Criterion 3

criteria systematically overestimate the number of components, regardless of the
separation amongst the clusters. In these cases only the ICL and the PNC ob-
tain satisfactory results. In particular, the proposed PNC index provided a high
detection rate and the lowest overestimation rate in all the tests performed.

2 The Partition Negentropy Criterion

In this section we develop the Partition Negentropy Criterion, a cluster validity
index whose aim is to find well separated clusters as normally distributed as
possible. The normality of a cluster is characterized by means of its negentropy,
a standard measure of distance to normality which computes the difference be-
tween the cluster’s entropy and the entropy of a Gaussian distribution with the
same covariance matrix [23]. The negentropy of a continuous random variable X

is defined as:

J(X) = Ĥ(X) − H(X) (1)

where H(X) is the differential entropy of X and Ĥ(X) is the differential en-
tropy of a normal distribution with the same covariance matrix. The Gaussian
distribution maximizes the differential entropy for a given covariance matrix
[24], so the negentropy is always non-negative, being zero if and only if X is
normally distributed. The maximum entropy property associated to the normal
distribution also provides a hint on why normality is a desired property of any
cluster. Maximum entropy, or equivalently maximum uncertainty, implies min-
imum structure, and so a normally distributed cluster can not be expected to
contain other substructures.

Let us consider a set of data points {xi} and a fuzzy partition p(c|xi) into
a set of clusters C. Our goal is to obtain a cluster validity index that rewards
partitions into well separated Gaussian clusters. We will measure the quality of
the partition by:

H(C|X) + J(X|C) (2)

The first term measures the average degree of overlap amongst the clusters,
while the second corresponds to the average negentropy of the clusters, which
measures how distant they are from a Gaussian distribution. So minimization
of this expression will favour partitions that consist of well separated normally
distributed clusters. We can write J(X|C) as:

J(X|C) = Ĥ(X|C) − H(X|C) (3)

And, using basic properties of the conditional entropy [24], rewrite it as:

J(X|C) = Ĥ(X|C) + H(C) − H(X) − H(C|X) (4)

Note that the term H(X) is constant for the problem, and so it can be ignored
when minimizing the expression in 2. The term Ĥ(X|C) can be expressed as:
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Ĥ(X|C) =

nc∑

c=1

p(c)Ĥ(X|c) (5)

where the sum extends to all the nc clusters in C, p(c) is the a-priori probability
of cluster c, and Ĥ(X|c) is the differential entropy of the cluster c assuming
normality, that is:

Ĥ(X|c) =
1

2
log |Σc| +

d

2
log 2πe (6)

where Σc is the covariance matrix of cluster c and d is the dimension of X. If we
substitute equations 4, 5 and 6 into expression 2, and neglect terms that do not
depend on the partition C, we obtain the Partition Negentropy Criterion as:

PNC(C) =
1

2

nc∑

c=1

p(c) log |Σc| −

nc∑

c=1

p(c) log p(c) (7)

Given different partitions of a data set, we will select that with a lower PNC.

3 Evaluation of the PNC

To test the new cluster validity criterion we use the PNC to validate fuzzy par-
titions resulting from the application of the EM algorithm to a set of synthetic
problems, and compare the results to those obtained with the AIC, the BIC,
and the ICL criteria. For every problem we follow the same approach. First,
the EM algorithm is used to fit a set of Gaussian mixtures with different num-
ber of components. Then, for each index (AIC, BIC, ICL, PNC) we select the
mixture which provides the best index value. We compute the PNC by directly
substituting the covariance matrices and the prior probabilities given by the EM
algorithm into equation 7.

3.1 Two Simple Examples

We will first illustrate the PNC with two simple examples consisting of three well
separated clusters in two dimensions. In the first case each cluster consists of
1000 points drawn from a normal distribution with covariance matrix equal to the
identity matrix, Σ = I, and centered at µ1 = (0, 0), µ2 = (5, 0), and µ3 = (5, 5)
respectively (see figure 1). For this problem we have run the EM algorithm to fit
a mixture of nc Gaussians, with nc ∈ {1, 2, 3, 4, 5}. The algorithm has been run
10 times for each nc. The best partitions according to each of the four validity
criteria are shown in figures 1A (AIC), 1B (BIC), 1C (ICL), and 1D (PNC). The
solid lines represent the contours of the Gaussian components. Note that for
well separated normal clusters all the criteria select partitions with the correct
number of clusters (nc = 3).

The second problem consists of three non-Gaussian clusters of 1000 points
each. In polar coordinates, the clusters follow a gamma distribution in the radius
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Fig. 1. Assessment of the number of clusters in a problem consisting of a mixture of
three Gaussian distributions in 2D. The EM algorithm has been run 10 times for each
number of components (ranging from 1 to 5), and the best solution according to the
four criteria is selected. A. Akaike’s criterion (AIC). B. Bayesian inference criterion
(BIC). C. Information Completed Likelihood (ICL). D. Partition Negentropy Criterion
(PNC).

and a uniform distribution in the angle. The gamma distribution has a shape
parameter k = 2 and a scale parameter θ = 1.5. The three clusters are centered
at µ1 = (0, 0), µ2 = (15, 0), and µ3 = (15, 15) respectively. As before, we have
run the EM algorithm 10 times for each nc, and we have selected the best
partitions according to the four validity criteria. The results are shown in figures
2A (AIC), 2B (BIC), 2C (ICL), and 2D (PNC). Note that, although the clusters
are easily separable, only the PNC is able to correctly assess the number of
clusters (nc = 3). The other criteria overestimate the number of components.
The AIC and BIC select partitions with nc = 5 clusters, while the ICL selects a
partition with nc = 4 clusters.

These examples show that standard criteria such as AIC, BIC or ICL can
perform poorly as cluster validity indices when the underlying data distribution
does not match the assumed mixture model. On the other hand, the PNC shows
a good performance even when the cluster distributions are not pure Gaussians.
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Fig. 2. Assessment of the number of clusters in a problem consisting of a mixture of
three non-Gaussian distributions in 2D. The EM algorithm has been run 10 times for
each number of components (ranging from 1 to 5), and the best solution according to
the four criteria is selected. A. Akaike’s criterion (AIC). B. Bayesian inference criterion
(BIC). C. Information Completed Likelihood (ICL). D. Partition Negentropy Criterion
(PNC).

3.2 Number of Detected Clusters versus Inter-Cluster Distance

As a second test we consider the assessment of the number of components in
problems consisting of two spherical clusters with covariance matrices equal to
the identity matrix, Σ = I, and 1000 points each in two dimensions. The distance
between the cluster centers is varied in order to obtain problems with different
degree of overlap. We want to study the performance of the PNC and the other
criteria as a function of the overlap for different cluster shapes. The shape of the
clusters is modeled according to the following four kinds of probability distribu-
tions:

1. Pure normal distribution. Its covariance matrix is equal to the identity ma-
trix, Σ = I.

2. Truncated normal distribution. Points are generated using a pure normal
distribution, and those whose distance to the mean exceeds 1.8 times the
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standard deviation are discarded. A scaling factor is applied to ensure that
the resulting distribution has a covariance matrix Σ = I.

3. Uniform distribution inside a circle. The circle radius is selected such that
the covariance matrix is Σ = I.

4. Gamma-uniform distribution. The same distribution as in the second exam-
ple of section 3.1 is used. The shape parameter of the gamma is k = 2, and
the scale parameter is selected to ensure that the resulting distribution has
a covariance matrix Σ = I.

In all the cases the first cluster is centered at µ1 = (0, 0) and the second one
at µ2 = (d, 0), where d is the inter-cluster distance. For each problem and for
values of d ranging between 0 and 5, we use the EM algorithm to fit a Gaussian
mixture with a number of components nc ∈ {1, 2, 3, 4, 5}. As before, the EM
algorithm is run 10 times for each nc and the best partition according to each
of the four criteria is selected. A total of 40 different problems are generated for
each d in order to average. In figure 3 we plot the average number of clusters
in the best partition selected by each criterion versus the inter-cluster distance.
When the clusters follow a Gaussian distribution (figure 3A), the average number
of clusters selected by all the criteria is between 1 and 2. As we can see AIC and
BIC can stand a higher overlap than the other indices. On the other hand, when
the underlying cluster distribution is not Gaussian (figures 3B, 3C and 3D) AIC
and BIC tend to overestimate the number of clusters for any degree of overlap. In
these cases only the ICL and PNC criteria provide satisfactory results. The ICL
criterion admits a slightly higher overlap, but it also overestimates the number
of components for gamma-uniform distributed clusters at high d. At the price of
a higher tendency to merge overlapping clusters, the proposed PNC is the only
index that correctly assesses the number of clusters for all the considered cluster
shapes when the clusters are well separated.

3.3 Number of Clusters in Randomly Generated Problems

Finally, we make the last test using 1000 randomly generated problems. Each
problem contains three clusters in two dimensions, but the shape, orientation,
position and scale of the clusters are selected randomly. The 4 cluster shapes of
section 3.2 are considered. As for previous tests, the EM algorithm is used to
fit a Gaussian mixture model to each problem. We try different number of com-
ponents, nc ∈ {1, 2, 3, 4, 5}, and the algorithm is run 5 times for each nc. Then
the four validity criteria are used to select a preferred partition. In table 1 we
show the percentage of problems for which each criterion selects a partition with
1, 2, 3, 4 or 5 clusters. Note that the PNC is the one which selects the correct
number of clusters (nc = 3) with a higher probability (76% of the problems). In
addition, it only overestimates the number of clusters for the 9% of the problems.
The ICL follows closely (72.4% of correct partitions and 15.5% of overestima-
tion), but AIC and BIC perform very poorly and they only select the correct
number of clusters for the 11.6% and the 26% of the problems respectively.
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Fig. 3. Average number of clusters selected by the four considered validity criteria
versus inter-cluster distance. A. The two clusters are normally distributed. B. The
clusters are Gaussians without tails. C. The clusters are uniformly distributed inside
a circle. D. The clusters follow a gamma-uniform distribution.

4 Discussion

In this article we have presented the Partition Negentropy Criterion (PNC), a
cluster validity index whose aim is to find clearly separated clusters whose shape
is as Gaussian as possible. The index measures the normality of the clusters
using the negentropy, and it measures the cluster separation using the partition
entropy. We investigated the performance of the PNC using synthetic clustering
problems, where the ability to assess the number of clusters was compared to the
AIC, BIC and ICL criteria. We first checked that the PNC is able to determine
the correct number of clusters in problems whose data points are generated from
a mixture of well separated Gaussian distributions. We observed, however, that
the performance degrades when the Gaussians are overlapped. In these cases the
PNC obtains a similar performance to ICL, but slightly worst than AIC and
BIC. On the other hand, we showed that the PNC provides good results even
when the data are generated from mixtures of non-Gaussian distributions. In
such situations the PNC is still able to detect the correct number of clusters,
outperforming the other criteria, which are more prone to overestimate this
number.
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Table 1. Percentage of data sets for which each criterion predicts 1, 2, 3, 4 or 5 clusters.

nc AIC BIC ICL PNC

1 0.0 0.0 0.2 0.6

2 0.3 0.5 11.9 14.4

3 11.6 26.0 72.4 76.0

4 27.7 38.7 14.1 5.2

5 60.4 34.8 1.4 3.8

Although the results here presented are promising, future work using real
datasets is needed in order to validate the proposed criterion. On the other
hand, the mathematical simplicity of the PNC, whose evaluation involves just
the computation of the determinants of the covariance matrices of each cluster,
may permit an analytical study of its performance. This is specially interesting
as it would allow to compare the PNC to other indices at the mathematical level.

In the present work, the calculation of the mixture model parameters via EM
is conceptually separated from the validation step, in which the validity indices
are used to evaluate the outcomes of a particular run of the algorithm. Given
the mathematical simplicity of the PNC, we believe that it could be possible
to integrate it into an EM algorithm, thus obtaining an iterative procedure
that simultaneously searches for the number of clusters and the mixture model
parameters.

Finally, we will investigate how the PNC could be extended to deal with
variables which are not continuous.
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