Skip to main content

Acquiring and Classifying Signals from Nanopores and Ion-Channels

  • Conference paper
Artificial Neural Networks – ICANN 2009 (ICANN 2009)

Abstract

The use of engineered nanopores as sensing elements for chemical and biological agents is a rapidly developing area. The distinct signatures of nanopore-nanoparticle lend themselves to statistical analysis. As a result, processing of signals from these sensors is attracting a lot of attention. In this paper we demonstrate a neural network approach to classify and interpret nanopore and ion-channel signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Coulter, W.H.: Means for Counting Particles Suspended in a Fluid, U.S. Patent Number 2656508 (1953)

    Google Scholar 

  2. Henriquez, R.R., Ito, T., Sun, L., Crooks, R.M.: The resurgence of Coulter counting for analyzing nanoscale objects. Analyst 129, 478–482 (2004)

    Article  Google Scholar 

  3. Heng, J.B., Ho, C., Kim, T., Timp, R., Aksimentiev, A., Grinkova, Y.V., Sligar, S., Schulten, K., Timp, G.: Sizing DNA using a nanometer-diameter pore. Biophysical Journal 87, 2905–2911 (2004)

    Article  Google Scholar 

  4. Heng, J.B., Aksimentiev, A., Ho, C., Marks, P., Grinkova, Y.V., Sligar, S., Schulten, K., Timp, G.: Stretching DNA using the electric field in a synthetic nanopore. Nano Letters 5, 1883–1888 (2005)

    Article  Google Scholar 

  5. Han, A.P., Schurmann, G., Mondin, G., Bitterli, R.A., Hegelbach, N.G., de Rooij, N.F., Staufer, U.: Sensing protein molecules using nanofabricated pores. Applied Physics Letters 88 (2006)

    Google Scholar 

  6. Deblois, R.W., Bean, C.P., Wesley, R.K.A.: Electrokinetic Measurements with Submicron Particles and Pores by Resistive Pulse Technique. Journal of Colloid and Interface Science 61, 323–335 (1977)

    Article  Google Scholar 

  7. Mara, A., Siwy, Z., Trautmann, C., Wan, J., Kamme, F.: An asymmetric polymer nanopore for single molecule detection. Nano Letters 4, 497–501 (2004)

    Article  Google Scholar 

  8. Ito, T., Sun, L., Henriquez, R.R., Crooks, R.M.: A Carbon Nanotube-Based Coulter Nanoparticle Counter. Acc. Chem. Res. 37(2), 937–945 (2004)

    Article  Google Scholar 

  9. Petrossian, L.: Cylindrical Solid State Nanopores, Ph. D Thesis, Arizona State University, Tempe, AZ-85287

    Google Scholar 

  10. Bayley, H., Martin, C.R.: Resistive-pulse sensing-From microbes to molecules. Chemical Rev. 100, 2575–2594 (2000)

    Article  Google Scholar 

  11. Braha, O., Gu, L.Q., Zhou, L., Lu, X.F., Cheley, S., Bayley, H.: Simultaneous stochastic sensing of divalent metal ions. Nature Biotechnology 18, 1005–1007 (2000)

    Article  Google Scholar 

  12. Gu, L.Q., Braha, O., Conlan, S., Cheley, S., Bayley, H.: Stochastic sensing of organic analytes by a pore-forming protein Containing a molecular adapter. Nature 398, 686–690 (1999)

    Article  Google Scholar 

  13. Luchian, T., Shin, S.H., Bayley, H.: Single-molecule covalent chemistry with spatially separated reactants. Angewandte Chemie-International Edition 42, 3766–3771 (2003)

    Article  Google Scholar 

  14. Wilk, S.J., Goryll, M., Laws, G.M., Goodnick, S.M., Thornton, T.J., Saraniti, M., Tang, J., Eisenberg, R.S.: Teflon (TM)-coated silicon apertures for supported lipid bilayer membranes. Appl. Phys. Lett. 85(15), 3307–3309 (2004)

    Article  Google Scholar 

  15. McManus, O.B., Blatz, A.L., Magleby, K.L.: Sampling, log binning, fitting, and plotting durations of open and shut intervals from single channels and the effects of noise. Pflugers Arch. 410, 530–553 (1987)

    Article  Google Scholar 

  16. Sigworth, F.J., Sine, S.M.: Data transformations for improved display and fitting of single-channel dwell time histograms. Biophysical Journal 52, 1047–1054 (1987)

    Article  Google Scholar 

  17. Ball, F.G., Kerry, C.J., Ramsey, R.L., Sansom, M.S.P., Usherwood, P.N.R.: The use of dwell time cross-correlation functions to study single-ion channel gating kinetics. Biophysical Journal 54, 309–320 (1988)

    Article  Google Scholar 

  18. Venkataramanan, L., Sigworth, F.J.: Applying Hidden Markov Models to the analysis of single ion channel activity. Biophysical Journal 82, 1930–1942 (2002)

    Article  Google Scholar 

  19. Venkataramanan, L., Walsh, J., Kuc, R., Sigworth, F.: Identification of HMM for ion channel currents-part I: colored noise. IEEE Trans. on Sig. Proc. 46(7), 1901–1915 (1998)

    Article  Google Scholar 

  20. Qin, F., Auerbach, A., Sachs, F.: Hidden Markov modeling for single channel kinetics with filtering and correlated noise. Biophysical Journal 79, 1928–1944 (2000)

    Article  Google Scholar 

  21. Spanias, A., Goodnick, S., Thornton, T., Phillips, S., Wilk, S., Kwon, H.: Signal processing for silicon ion-channel sensors. In: Proc. IEEE SAFE 2007 (2007)

    Google Scholar 

  22. Kwon, H., Knee, P., Spanias, A., Goodnick, S., Thornton, T., Phillips, S.: Transform-domain features for ion-channel sensors. In: Proc. IASTED SPPRA 2008, Paper 599-104 (2008)

    Google Scholar 

  23. Konnanath, B., Knee, P., Spanias, A., Wichern, G.: Classification of Ion-Channel Signals using Neural Networks. In: Proc. IASTED SPPRA 2009, Paper 643-075 (2009)

    Google Scholar 

  24. Jagtiani, A.V., Sawant, R., Carletta, J., Zhe, J.: Wavelet transform-based methods for denoising of Coulter counter signals. Meas. Sci. Technol. 19(6), 1–15 (2008)

    Article  Google Scholar 

  25. Bishop, C.M.: Pattern Recognition for Machine Learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  26. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  27. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, Chichester (2001)

    MATH  Google Scholar 

  28. QuB: A software package for Markov analysis of single-molecule kinetics, http://www.qub.buffalo.edu/wiki/index.php/Main\_Page

  29. Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  30. The Spider (SVM Toolbox) version 1.71 for MATLAB, http://www.kyb.mpg.de/bs/people/spider/main.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Konnanath, B. et al. (2009). Acquiring and Classifying Signals from Nanopores and Ion-Channels. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5769. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04277-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04277-5_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04276-8

  • Online ISBN: 978-3-642-04277-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics