Skip to main content

Quality Improvement of Non-manifold Hexahedral Meshes for Critical Feature Determination of Microstructure Materials

  • Conference paper
Proceedings of the 18th International Meshing Roundtable

Abstract

This paper describes a novel approach to improve the quality of non-manifold hexahedral meshes with feature preservation for microstructure materials. In earlier works, we developed an octree-based isocontouring method to construct unstructured hexahedral meshes for domains with multiple materials by introducing the notion of material change edge to identify the interface between two or more materials. However, quality improvement of non-manifold hexahedral meshes is still a challenge. In the present algorithm, all the vertices are categorized into seven groups, and then a comprehensive method based on pillowing, geometric flow and optimization techniques is developed for mesh quality improvement. The shrink set in the modified pillowing technique is defined automatically as the boundary of each material region with the exception of local non-manifolds. In the relaxation-based smoothing process, non-manifold points are identified and fixed. Planar boundary curves and interior spatial curves are distinguished, and then regularized using B-spline interpolation and resampling. Grain boundary surface patches and interior vertices are improved as well. Finally, the local optimization method eliminates negative Jacobians of all the vertices. We have applied our algorithms to two beta titanium datasets, and the constructed meshes are validated via a statistics study. Finite element analysis of the 92-grain titanium is carried out based on the improved mesh, and compared with the direct voxel-to-element technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asaro, R.: Micromechanics of Crystals and Polycrystals. Division of Applied Sciences 23, 1–115 (1983)

    Google Scholar 

  2. Blacker, T., Myers, R.: Seams and Wedges in Plastering: a 3D Hexahedral Mesh Generation Algorithm. Engineering With Computers 2, 83–93 (1993)

    Article  Google Scholar 

  3. Cailletaud, G., Forest, S., Jeulin, D., Feyel, F., Galliet, I., Mounoury, V., Quilici, S.: Some Elements of Microstructural Mechanics. Acta Materialia 27, 351–374 (2003)

    Google Scholar 

  4. Canann, S., Tristano, J., Staten, M.: An Approach to Combined Laplacian and Optimization-based Smoothing for Triangular, Quadrilateral and Quad-dominant Meshes. In: 7th International Meshing Roundtable, pp. 479–494 (1998)

    Google Scholar 

  5. Chawla, N., Ganesh, V., Wunsch, B.: Three-Dimensional (3D) Microstructure Visualization and Finite Element Modeling of the Mechanical Behavior of SiC Particle Reinforced Aluminum Composites. Scripta Materialia 51, 161–165 (2004)

    Article  Google Scholar 

  6. Dawson, P., Mika, D., Barton, N.: Finite Element Modeling of Lattice Misorientations in Aluminum Polycrystals. Scripta Materialia 47, 713–717 (2002)

    Article  Google Scholar 

  7. Diard, O., Leclercq, S., Rousselier, G., Cailletaud, G.: Evaluation of Finite Element Based Analysis of 3D Multicrystalline Aggregates Plasticity Application to Crystal Plasticity Model Identification and the Study of Stress and Strain Fields near Grain Boundaries. International Journal of Plasticity 21, 691–722 (2005)

    Article  MATH  Google Scholar 

  8. Field, D.: Laplacian Smoothing and Delaunay Triangulations. Communications in Applied Numerical Methods 4, 709–712 (1988)

    Article  MATH  Google Scholar 

  9. Freitag, L.: On Combining Laplacian and Optimization-based Mesh Smoothing Techniques. Trends in Unstructured Mesh Generation 220, 37–43 (1997)

    Google Scholar 

  10. Ghosh, S., Moorthy, S.: Three dimensional Voronoi Cell Finite Element Model for Microstructures with Ellipsoidal Heterogeneties. Computational Mechanics 34, 510–531 (2004)

    Article  MATH  Google Scholar 

  11. Groeber, M., Ghosh, S., Uchic, M., Dimiduk, D.: A Framework For Automated Analysis and Simulation of 3D Polycrystalline Microstructures: Part 1: Statistical Characterization. Acta Materialia 56, 1257–1273 (2008)

    Article  Google Scholar 

  12. Huang, Y.: A User-Material Subroutine Incorporating Single Crystal Plasticity in the ABAQUS Finite Element Program. Division of Applied Sciences 23, 3647–3679 (1991)

    Google Scholar 

  13. Kanit, T., Forest, S., Galliet, I., Mounoury, V., Jeulin, D.: Determination of The Size of the Representative Volume Element for Random Composites: Statistical and Numerical Approach. International Journal of Solids and Structures 40, 3647–3679 (2003)

    Article  MATH  Google Scholar 

  14. Knupp, P.: Achieving Finite Element Mesh Quality via Optimization of the Jacobian Matrix Norm and Associated Quantities. Part II - a Framework for Volume Mesh Optimization and the Condition Number of the Jacobian Matrix. International Journal for Numerical Methods in Engineering 48, 1165–1185 (2000)

    Article  MATH  Google Scholar 

  15. Knupp, P.: Hexahedral and Tetrahedral Mesh Untangling. Engineering with Computers 17, 261–268 (2001)

    Article  MATH  Google Scholar 

  16. Kral, M., Spanos, G.: Three-Dimensional Analysis of Proeutectoid Cementite Precipitates. Acta Materialia 47, 711–724 (1999)

    Article  Google Scholar 

  17. Kumar, S., Kurtz, S.: Simulation of Material Microstructure Using a 3D Voronoi Tesselation: Calculation of Effective Thermal Expansion Coefficient of Polycrystalline Materials. Acta Metallurgica et Materialia 42, 3917–3927 (1994)

    Article  Google Scholar 

  18. Lee, S., Rollett, A., Rohrer, G.: Three-Dimensional Microstructure Reconstruction Using FIB-OIM. Materials Science Forum, 915–920 (2007)

    Google Scholar 

  19. Lewis, A., Bingert, J., Rowenhorst, D., Gupta, A., Geltmacher, A., Spanos, G.: Two and Three Dimensional Microstructural Characterization of a Super-Austenitic Stainless Steel. Materials Science and Engineering 418, 11–18 (2005)

    Google Scholar 

  20. Lewis, A., Geltmacher, A.: Image-Based Modeling of the Response of Experimental 3D Microstructures to Mechanical Loading. Scripta Materialia 55(9), 81–85 (2006)

    Article  Google Scholar 

  21. Lewis, A., Jordan, K., Geltmacher, A.: Determination of Critical Microstructural Features in an Austenitic Stainless Steel Using Image-Based Finite Element Modeling. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 39(5), 1109–1117 (2008)

    Article  Google Scholar 

  22. Mitchell, S., Tautges, T.: Pillowing Doublets: Refining a Mesh to Ensure That Faces Share at Most One Edge. In: 4th International Meshing Roundtable, pp. 231–240 (1995)

    Google Scholar 

  23. Nygards, M.: Number of Grains Necessary to Homogenize Elastic Materials with Cubic Symmetry. Mechanics of Materials 35, 1049–1057 (2003)

    Article  Google Scholar 

  24. Price, M., Armstrong, C.: Hexahedral Mesh Generation by Medial Surface Subdivision: Part i. International Journal for Numerical Methods in Engineering 38, 3335–3359 (1995)

    Article  MATH  Google Scholar 

  25. Price, M., Armstrong, C.: Hexahedral Mesh Generation by Medial Surface Subdivision: Part ii. International Journal for Numerical Methods in Engineering 40, 111–136 (1997)

    Article  Google Scholar 

  26. Qidwai, M., Lewis, A., Geltmacher, A.: Image-based Computational Modeling and Analysis of a Beta Titanium Alloy. Acta Materialia, in review (2009)

    Google Scholar 

  27. Rollett, A., Lee, S., Campman, R., Rohrer, G.: Three-Dimensional Characterization of Microstructure by Electron Back-Scatter Diffraction. Annual Review of Materials Research 37, 627–658 (2007)

    Article  Google Scholar 

  28. Rowenhorst, D., Gupta, A., Feng, C., Spanos, G.: 3D Crystallographic and Morphological Analysis of Coarse Martensite: Combining EBSD and Serial Sectioning. Scripta Materialia 55, 11–16 (2006)

    Article  Google Scholar 

  29. Schneiders, R.: A Grid-based Algorithm for the Generation of Hexahedral Element Meshes. Engineering with Computers 12, 168–177 (1996)

    Article  Google Scholar 

  30. Schneiders, R., Weiler, F.: Octree-Based Generation of Hexahedral Element Meshes. In: 5th International Meshing Roundtable, pp. 205–216 (1996)

    Google Scholar 

  31. Shephard, M., Georges, M.: Three-Dimensional Mesh Generation by Finite Octree Technique. International Journal for Numerical Methods in Engineering 32, 709–749 (1991)

    Article  MATH  Google Scholar 

  32. Shepherd, J.: Topologic and Geometric Constraint-Based Hexahedral Mesh Generation. University of Utah (2007)

    Google Scholar 

  33. Shontz, S., Vavasis, S.: A Mesh Warping Algorithm Based on Weighted Laplacian Smoothing. In: 12th International Meshing Roundtable, pp. 147–158 (2003)

    Google Scholar 

  34. Spanos, G., Rowenhorst, D., Lewis, A., Geltmacher, A.: Combining Serial Sectioning, EBSD Analysis, and Image-Based Finite Element Modeling. MRS Bulletin 33, 597–602 (2008)

    Google Scholar 

  35. Tautges, T., Blacker, T., Mitchell, S.: The Whisker-Weaving Algorithm: a Connectivity Based Method for Constructing All-hexahedral Finite Element Meshes. International Journal for Numerical Methods in Engineering 39, 3327–3349 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  36. Youssef, S., Maire, E., Gaertner, R.: Finite Element Modeling of the Actual Structure of Cellular Materials Determined by X-ray Tomography. Acta Materialia 53, 719–730 (2005)

    Article  Google Scholar 

  37. Zhang, Y., Bajaj, C.: Adaptive and Quality Quadrilateral/Hexahedral Meshing from Volumetric Data. Computer Methods in Applied Mechanics and Engineering 195, 942–960 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  38. Zhang, Y., Bajaj, C., Sohn, B.: 3D Finite Element Meshing from Imaging Data. The special issue of Computer Methods in Applied Mechanics and Engineering on Unstructured Mesh Generation 194, 5083–5106 (2005)

    MATH  Google Scholar 

  39. Zhang, Y., Bajaj, C., Xu, G.: Surface Smoothing and Quality Improvement of Quadrilateral/Hexahedral Meshes with Geometric Flow. In: 14th International Meshing Roundtable, pp. 449–468 (2005)

    Google Scholar 

  40. Zhang, Y., Hughes, T., Bajaj, C.: An Automatic 3D Mesh Generation Method for Domains with Multiple Materials. Computer Methods in Applied Mechanics and Engineering (in press, 2009)

    Google Scholar 

  41. Zhao, Y., Tryon, R.: Automatic 3D Simulation and Micro-Stress Distribution of Polycrystalline Metallic Materials. Computer Methods in Applied Mechanics and Engineering 193, 3919–3934 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qian, J., Zhang, Y., Wang, W., Lewis, A.C., Qidwai, M.A.S., Geltmacher, A.B. (2009). Quality Improvement of Non-manifold Hexahedral Meshes for Critical Feature Determination of Microstructure Materials. In: Clark, B.W. (eds) Proceedings of the 18th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04319-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04319-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04318-5

  • Online ISBN: 978-3-642-04319-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics