Skip to main content

On the Use of Space Filling Curves for Parallel Anisotropic Mesh Adaptation

  • Conference paper
Proceedings of the 18th International Meshing Roundtable

Abstract

Efficiently parallelizing a whole set of meshing tools, as required by an automated mesh adaptation loop, relies strongly on data localization to avoid memory access contention. In this regard, renumbering mesh items through a space filling curve (SFC), like Hilbert or Peano, is of great help and proved to be quite versatile. This paper briefly introduces the Hilbert SFC renumbering technique and illustrates its use with two different approaches to parallelization: an out-of-core method and a shared-memory multi-threaded algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aftosmis, M., Berger, M., Murman, S.: Applications of space-filling curves to cartesian methods for CFD. AIAA Paper 2004-1232 (2004)

    Google Scholar 

  2. Alauzet, F.: Size gradation control of anisotropic meshes. Finite Elem. Anal. Des. (2009) doi:10.1016/j.finel.2009.06.028

    Google Scholar 

  3. Alauzet, F., Frey, P., George, P.-L., Mohammadi, B.: 3D transient fixed point mesh adaptation for time-dependent problems: Application to CFD simulations. J. Comp. Phys. 222, 592–623 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alauzet, F., Li, X., Seol, E.S., Shephard, M.: Parallel anisotropic 3D mesh adaptation by mesh modification. Eng. w. Comp. 21(3), 247–258 (2006)

    Article  Google Scholar 

  5. Alauzet, F., Loseille, A.: High order sonic boom modeling by adaptive methods. RR-6845, INRIA (February 2009)

    Google Scholar 

  6. Alauzet, F., Mehrenberger, M.: P1-conservative solution interpolation on unstructured triangular meshes. RR-6804, INRIA (January 2009)

    Google Scholar 

  7. Alleaume, A., Francez, L., Loriot, M., Maman, N.: Large out-of-core tetrahedral meshing. In: Proceedings of the 16th International Meshing Roundtable, pp. 461–476 (2007)

    Google Scholar 

  8. Behrens, J., Zimmermann, J.: Parallelizing an unstructured grid generator with a space-filling curve approach. In: Bode, A., Ludwig, T., Karl, W.C., Wismüller, R. (eds.) Euro-Par 2000. LNCS, vol. 1900, pp. 815–823. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Cantor, G.: über unendliche, lineare punktmannigfaltigkeiten 5. Mathematische Annalen 21, 545–586 (1883)

    Article  MathSciNet  Google Scholar 

  10. Cavallo, P., Sinha, N., Feldman, G.: Parallel unstructured mesh adaptation method for moving body applications. AIAA Journal 43(9), 1937–1945 (2005)

    Article  Google Scholar 

  11. DeCougny, H.L., Shephard, M.: Parallel refinement and coarsening of tetrahedral meshes. Journal for Numerical Methods in Engineering 46(7), 1101–1125 (1999)

    Article  MathSciNet  Google Scholar 

  12. Dobrzynski, C., Frey, P.J.: Anisotropic Delaunay mesh adaptation for unsteady simulations. In: Proceedings of the 17th International Meshing Roundtable, pp. 177–194. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Frey, P.J., Alauzet, F.: Anisotropic mesh adaptation for CFD computations. Comput. Methods Appl. Mech. Engrg. 194(48-49), 5068–5082 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Frey, P., George, P.-L.: Mesh generation. Application to finite elements, 2nd edn. ISTE Ltd and John Wiley & Sons, Chichester (2008)

    MATH  Google Scholar 

  15. Hilbert, D.: über die stetige abbildung einer linie auf ein flächenstück. Mathematische Annalen 38, 459–460 (1891)

    Article  MathSciNet  Google Scholar 

  16. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing 20(1), 359–392 (1998)

    Article  MathSciNet  Google Scholar 

  17. Larwood, B.G., Weatherill, N.P., Hassan, O., Morgan, K.: Domain decomposition approach for parallel unstructured mesh generation. Int. J. Numer. Meth. Engng. 58(2), 177–188 (2003)

    Article  MATH  Google Scholar 

  18. Lepage, C., Habashi, W.: Parallel unstructured mesh adaptation on distributed-memory systems. AIAA Paper 2004-2532 (2004)

    Google Scholar 

  19. Löhner, R.: Applied CFD techniques. An introduction based on finite element methods. John Wiley & Sons, Ltd., New York (2001)

    Google Scholar 

  20. Löhner, R.: A parallel advancing front grid generation scheme. Int. J. Numer. Meth. Engng 51, 663–678 (2001)

    Article  MATH  Google Scholar 

  21. Loseille, A., Dervieux, A., Frey, P., Alauzet, F.: Achievement of global second-order mesh convergence for discontinuous flows with adapted unstructured meshes. AIAA paper 2007-4186 (2007)

    Google Scholar 

  22. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freedman and Co., New York (1982)

    MATH  Google Scholar 

  23. Marcum, D.: Iterative partitioning for parallel mesh generation. In: Tetrahedron Workshop, vol. 2 (2007)

    Google Scholar 

  24. Marechal, L.: The LP2 library. A parallelization framework for numerical simulation. Technical Note, INRIA (2009)

    Google Scholar 

  25. Mesri, Y., Zerguine, W., Digonnet, H., Silva, L., Coupez, T.: Dynamic parallel adaption for three dimensional unstructured meshes: Application to interface tracking. In: Proceedings of the 17th International Meshing Roundtable, pp. 195–212. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Niedermeier, R., Reinhardt, K., Sanders, P.: Towards optimal locality in mesh-indexings. Discrete Applied Mathematics 7, 211–237 (2002)

    Article  MathSciNet  Google Scholar 

  27. Park, M., Darmofal, D.: Parallel anisotropic tetrahedral adaptation. AIAA Paper 2008-0917 (2008)

    Google Scholar 

  28. Peano, G.: Sur une courbe, qui remplit toute une aire plane. Mathematische Annalen 36, 157–160 (1890)

    Article  MathSciNet  Google Scholar 

  29. Pilkington, J., Baden, S.: Dynamic partitioning of non-uniform structured workloads with spacefilling curves. IEEE Transactions on Parallel and Distributed Systems 117(3), 288–300 (1996)

    Article  Google Scholar 

  30. Sagan, H.: Space-Filling Curves. Springer, New York (1994)

    MATH  Google Scholar 

  31. Sharov, D., Luo, H., Baum, J., Löhner, R.: Implementation of unstructured grid GMRES+LU-SGS method on shared-memory, cache-based parallel computers. AIAA Paper 2000-0927 (2000)

    Google Scholar 

  32. Shontz, S., Knupp, P.: The effect of vertex reordering on 2D local mesh optimization efficiency. In: Proceedings of the 17th International Meshing Roundtable, pp. 107–124. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alauzet, F., Loseille, A. (2009). On the Use of Space Filling Curves for Parallel Anisotropic Mesh Adaptation. In: Clark, B.W. (eds) Proceedings of the 18th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04319-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04319-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04318-5

  • Online ISBN: 978-3-642-04319-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics