Skip to main content

Shape Operator Metric for Surface Normal Approximation

  • Conference paper
Proceedings of the 18th International Meshing Roundtable

Abstract

This work deals with the problem of practical mesh generation for surface normal approximation. Part of its contribution is in presenting previous work in a unified framework. A new algorithm for surface normal approximation is then introduced which improves upon existing ones in a number of aspects. In particular, it produces better approximations of surfaces both in practice and in the theoretical limit regime. Additionally, it resolves in a simple way some of the problems that previous methods for surface approximation suffered from.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Morii, F.: A Generalized K-Means Algorithm with Semi-Supervised Weight Coefficients. In: ICPR 2006: Proceedings of the 18th International Conference on Pattern Recognition, pp. 198–201 (2006)

    Google Scholar 

  2. Gruber, P.M.: Optimum quantization and its applications. Adv. Math. 186, 456–497 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Rusinkiewicz, S.: Estimating Curvatures and Their Derivatives on Triangle Meshes. In: Symposium on 3D Data Processing, Visualization, and Transmission (2004)

    Google Scholar 

  4. D’Azevedo, E.F., Simpson, R.B.: On Optimal Triangular Meshes for Minimizing the Gradient Error. Numerische Mathematik 59, 321–348 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Canas, G.D., Gortler, S.J.: On Asymptotically Optimal Meshes by Coordinate Transformation. In: 15th International Meshing Roundtable (2006)

    Google Scholar 

  6. Clarkson, K.L.: Building Triangulations Using Epsilon-Nets. In: STOC: Proceedings of the Thirty-eighth Annual SIGACT Symposium (2006)

    Google Scholar 

  7. Shewchuk, J.R.: What Is a Good Linear Finite Element? - Interpolation, Conditioning, Anisotropy, and Quality Measures. In: Eleventh International Meshing Roundtable, Ithaca, New York, pp. 115–126 (2002)

    Google Scholar 

  8. Nadler, E.: Piecewise linear best l2 approximation on triangulations. Approximation Theory V, 499–502 (1986)

    Google Scholar 

  9. Garland, M., Heckbert, P.: Surface Simplification Using Quadric Error Metrics. In: ACM SIGGRAPH (1997)

    Google Scholar 

  10. Heckbert, P.S., Garland, M.: Optimal triangulation and quadric-based surface simplification. Comput. Geom. Theory Appl. 14(1-3), 49–65 (1999)

    MATH  MathSciNet  Google Scholar 

  11. Gonzalez, T.: Clustering to Minimize the Maximum Inter-Cluster Distance. Theoretical Computer Science 38, 293–306 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  12. Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In: SODA: Symposium On Discreet Algorithms, pp. 1027–1035 (2007)

    Google Scholar 

  13. Lloyd, S.P.: Least squares quantization in PCM. IEEE Transactions on Information Theory 28(2), 129–136 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. In: ACM SIGGRAPH (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Canas, G.D., Gortler, S.J. (2009). Shape Operator Metric for Surface Normal Approximation. In: Clark, B.W. (eds) Proceedings of the 18th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04319-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04319-2_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04318-5

  • Online ISBN: 978-3-642-04319-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics