Skip to main content

Collars and Intestines: Practical Conforming Delaunay Refinement

  • Conference paper
Proceedings of the 18th International Meshing Roundtable
  • 1492 Accesses

Abstract

While several existing Delaunay refinement algorithms allow acute 3D piecewise linear complexes as input, algorithms producing conforming Delaunay tetrahedralizations (as opposed to constrained or weighted Delaunay tetrahedralizations) often involve cumbersome constructions and are rarely implemented. We describe a practical construction for both “collar” and “intestine”-based approaches to this problem. Some of the key ideas are illustrated by the inclusion of the analogous 2D Delaunay refinement algorithms, each of which differs slightly from the standard approach. We have implemented the 3D algorithms and provide some practical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boivin, C., Ollivier-Gooch, C.: Guaranteed-quality triangular mesh generation for domains with curved boundaries. International Journal for Numerical Methods in Engineering 55(10), 1185–1213 (2002)

    Article  MATH  Google Scholar 

  2. Cardoze, D.E., Miller, G.L., Olah, M., Phillips, T.: A Bezier-based moving mesh framework for simulation with elastic membranes. In: Proceedings of the 13th International Meshing Roundtable, pp. 71–80 (2004)

    Google Scholar 

  3. Cheng, S.-W., Dey, T.K., Levine, J.A.: A practical Delaunay meshing algorithm for a large class of domains. In: Proceedings of the 16th International Meshing Roundtable, pp. 477–494 (2007)

    Google Scholar 

  4. Cheng, S.-W., Dey, T.K., Ramos, E.A.: Delaunay refinement for piecewise smooth complexes. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1096–1105 (2007)

    Google Scholar 

  5. Cheng, S.-W., Poon, S.-H.: Three-dimensional Delaunay mesh generation. In: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 295–304 (2003)

    Google Scholar 

  6. Cohen-Steiner, D., de Verdière, E.C., Yvinec, M.: Conforming Delaunay triangulations in 3D. Computational Geometry: Theory and Applications 28(2-3), 217–233 (2004)

    MATH  MathSciNet  Google Scholar 

  7. Hudson, B.: Safe Steiner points for delaunay refinement. In: Research Notes of the 17th International Meshing Roundtable (2008)

    Google Scholar 

  8. Miller, G.L., Pav, S.E., Walkington, N.J.: When and why Ruppert’s algorithm works. In: Proceedings of the 12th International Meshing Roundtable, pp. 91–102 (2003)

    Google Scholar 

  9. Miller, G.L., Phillips, T., Sheehy, D.: Fast sizing calculations for meshing. In: 18th Fall Workshop on Computational Geometry (2008)

    Google Scholar 

  10. Murphy, M., Mount, D.M., Gable, C.W.: A point-placement strategy for conforming Delaunay tetrahedralization. International Journal of Computational Geometry and Applications 11(6), 669–682 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Pav, S.E., Walkington, N.J.: Robust three dimensional Delaunay refinement. In: Proceedings of the 13th International Meshing Roundtable, pp. 145–156 (2004)

    Google Scholar 

  12. Pav, S.E., Walkington, N.J.: Delaunay refinement by corner lopping. In: Proceedings of the 14th International Meshing Roundtable, pp. 165–181 (2005)

    Google Scholar 

  13. Rand, A., Walkington, N.: 3D Delaunay refinement of sharp domains without a local feature size oracle. In: Proceedings of the 17th International Meshing Roundtable, Pittsburgh, PA (2008)

    Google Scholar 

  14. Rand, A., Walkington, N.: Delaunay refinement algorithms for estimating local feature size (submitted, 2009)

    Google Scholar 

  15. Rineau, L., Yvinec, M.: Meshing 3D domains bounded by piecewise smooth surfaces. In: Proceedings of the 16th International Meshing Roundtable, pp. 443–460 (2007)

    Google Scholar 

  16. Ruppert, J.: A Delaunay refinement algorithm for quality 2-dimensional mesh generation. Journal of Algorithms 18(3), 548–585 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Shewchuk, J.R.: Mesh generation for domains with small angles. In: Proceedings of the 16th Annual Symposium on Computational Geometry, pp. 1–10 (2000)

    Google Scholar 

  18. Si, H.: On refinement of constrained Delaunay tetrahedralizations. In: Proceedings of the 15th International Meshing Roundtable, pp. 510–528 (2006)

    Google Scholar 

  19. Si, H., Gartner, K.: Meshing piecewise linear complexes by constrained Delaunay tetrahedralizations. In: Proceedings of the 14th International Meshing Roundtable, pp. 147–163 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rand, A., Walkington, N. (2009). Collars and Intestines: Practical Conforming Delaunay Refinement. In: Clark, B.W. (eds) Proceedings of the 18th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04319-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04319-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04318-5

  • Online ISBN: 978-3-642-04319-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics