
2

Labeling RDF Graphs for Linear Time and Space
Querying

Tim Furche, Antonius Weinzierl, and François Bry

Institute for Informatics, University of Munich,
Oettingenstraße 67, D-80538 München, Germany

http://www.pms.ifi.lmu.de/

Abstract. Indices and data structures for web querying have mostly considered
tree shaped data, reflecting the view of XML documents as tree-shaped. How-
ever, for RDF (and when querying ID/IDREF constraints in XML) data is indis-
putably graph-shaped. In this chapter, we first study existing indexing and label-
ing schemes for RDF and graph data in general with focus on support for efficient
adjacency and reachability queries. For XML, labeling schemes are an important
part of the widespread adoption of XML, in particular for mapping XML to exist-
ing (relational) database technology. However, the existing indexing and labeling
schemes for RDF (and graph data in general) sacrifice one of the most attractive
properties of XML labeling schemes, the constant time (and per-node space) test
for adjacency (child) and reachability (descendant). In the second part, we intro-
duce the first labeling scheme for RDF data that retains this property and thus
achieves linear time and space processing of acyclic RDF queries on a signifi-
cantly larger class of graphs than previous approaches (which are mostly limited
to tree-shaped data). Finally, we show how this labeling scheme can be applied to
(acyclic) SPARQL queries to obtain an evaluation algorithm with time and space
complexity linear in the number of resources in the queried RDF graph.

2.1 Introduction

“Interesting data is relationships” (Tim Berners-Lee1). To support this view of data, ini-
tiatives such as RDF and Linked Data have been launched and are increasingly adopted
beyond just an enthusiast and academic community (cf. RDFa use by Google).

What relationships exist between entities (resources) on the Web can not be regu-
lated in advance. From a data management perspective, this renders storage and access
schemes that rely on fixed, pre-established schemata mostly void in the Web context.
Rather than storing and accessing relations of a particular schema, Web data manage-
ment solutions have to deal with data in widely varying, constantly changing schemata.

Storage and access schemes specifically tailored to these properties of relation-
ships on the Web are therefore needed. For XML, where data is mostly considered

1 Talk on “The Next Web and Linked Data”, at TED 2009, http://www.ted.com/index.
php/talks/lang/eng/tim_berners_lee_on_the_next_web.html.

2 T. Furche et al.

tree shaped, such schemes have been developed and implemented with great success, in
particular in the form of labeling schemes.

Labeling schemes assign labels to nodes in a tree or graph in such a way that var-
ious relations between nodes can be decided given just the labels of two nodes. They
have proved to be one of the most pertinent techniques for time and space efficient
XML processing and are nowadays employed in most XML databases [35, 6]. Labeling
schemes are particularly interesting if queries are mostly concerned with the relation-
ships between entities in a query, e.g., the existence of a certain relation, the reachability
between two entities, etc.

For RDF, however, previously proposed storage and access schemes have, with few
exceptions, been adjacency- (storing triples directly and using standard joins for recon-
structing the graph structure) or schema-based (exploiting regularities in the shape of
RDF sub-graphs, e.g., that most resources of a give type have certain properties). The
reason for this lack is that graph data poses a greater challenge for labeling schemes than
tree data. Where labeling schemes for RDF and similar graph data have been developed
[1, 44, 10, 43] these labeling schemes have failed to preserve essential properties that
have made tree labeling schemes a success for all or at least a significant number of
RDF graphs.

In this chapter, we describe the first labeling scheme for RDF that retains most of
the following characteristics:

1. constant time adjacency test. In other words, the ability to test, in constant time,
whether a given triple holds in the queried RDF graph.

2. enumeration of all adjacent resources for a given resource in time linear in the
number of adjacent resources (but independent of the number of overall resources
in the graph). In other words, the ability to enumerate all properties of a given
resource in time linear in the number of these properties.

3. constant time reachability test. In other words, the ability to test, in constant time,
whether there is a path between two resources in the RDF graph. Just like for ad-
jacency, enumeration of reachable resources is linear in the number of reachable
resources, rather than the overall graph.

4. constant size labels2 and thus a linear overall size of the labeling (index) in the
number of resources in the graph.

5. polynomial labeling algorithm that computes the labeling for a given graph.

All these characteristics hold on tree data, e.g., for the pre-/post-encoding used in [6].
However, none of the previously proposed labeling scheme for graph (or specifically
RDF data) retains these properties. Though on arbitrary graphs our approach degener-
ates to quadratic space complexity (as previous approaches), we present the first char-
acterisation of a class of graphs for which these properties are retained yet that is a
non-trivial proper super-class of all structures (like XML trees) for which such a guar-
antee has been shown previously.

2 In this chapter we adopt the common convention to disregard that the size of labels scales
logarithmically with the size of the data. This is reasonable as such labels are usually stored
in attributes of a fixed numerical type (such as SQL’s INT or BIGINT type). If label size is of

2 Labeling RDF Graphs for Linear Time and Space Querying 3

Fig. 2.1 “The Five Good Emperors” (after Edward Gibbon).

2Nerva

4Trajan

6Hadrian

9Antonius Pius

11Marcus Aurelius

13Commodus

14Septimus Severus

1

Marcus Ulpius Traianus

3

Publius Aurelius Hadrianus Afer

5

Titus Aurelius Fulvus

8

Marcus Annius Verus

I

Mesopotamia

II

Arabia Petraea

III

Dacia

IV

Caledonia

7

Lucius Ceionius Commodus Verus

10

Lucius Aelius

12

Lucius Verus

ruling emperor (“augustus”) co-emperor (“caesar”) non-ruling family member

parent-child relation ruled relation

Example. The principle idea of the proposed labeling builds on a property from XML
query engines such as SPEX [33] and CAA [30]: to order the nodes of the XML tree in
such a way, that we can describe adjacency between nodes through intervals over that
order, rather than through explicit storage of the pairs of adjacent nodes.

Our labeling scheme, called -labeling, generalizes this property to general graphs:
In a -labeling each node n is labeled with a pair (ln, In) such that

1. ln is the position of n in some order over the nodes of the graph and
2. In is a set of non-overlapping intervals that covers all adjacent nodes of n.

concern, a logarithmic, multiplicative factor in the size of the graph is to be added to all the
complexities.

4 T. Furche et al.

Figure 2.1 shows an RDF graph about roman emperors, their relations, and the
provinces they ruled.3 We only show provinces that changed ownership in the depicted
time period, the remaining provinces are ruled by all the emperors shown here and can
be added trivially.

Neither the relations between the emperors nor the ruled relation between emper-
ors and provinces is tree shaped. In fact, some provinces are ruled by nearly all of the
depicted emperors (e.g., Dacia) while others where only in roman hands for a short
period of time (e.g., Mesopotamia). The relation between emperors is not tree shaped
as the emperors of this time used legal adoption (rather than blood relation) to choose
their heir and the depicted parent-child relation mixed legal and biological relations.

Despite the considerable complexity of the relations involved in this example, the
adjacent nodes of each emperor can be represented as a single interval for each of
the two relations. For instance, the sons of Hadrian form the interval [9,10], his ruled
provinces the interval [,]. For Antonius Pius the intervals are [11,12] and [,].

Since a single interval suffices to cover the adjacent nodes under each relation, the
 labels are constant for each node. Furthermore, testing whether two nodes (e.g.,
Hadrian and Dacia) are adjacent under one of the relations requires only two compar-
isons (lDacia = ∈ {[,]} = IHadrian, i.e., testing that ≤ ≤).

It should be obvious from the example, however, that the order in which the nodes
are labeled has a significant effect on the quality (label size and speed of adjacency
test) of the -labeling. We call a -labeling optimal, if the overall size of the In is
minimal, i.e., if the minimal number of intervals is needed to cover the adjacent nodes
of all nodes.

Fortunately, it turns out that this simple generalization of labeling schemes for tree
data is already surprisingly useful due to two properties: It is possible to test (and label)
in polynomial time whether the nodes in a graph can be ordered in such a way that
the adjacent nodes of each node form a single interval. Such a graph is then called a
 graph and it can be stored and queried as efficiently as a tree using the -labeling
scheme.

Unfortunately, if a given graph is not a , finding the optimal labeling is NP-
complete. However, a polynomial 1.5-approximation algorithm exists that allows the
-labeling to outperform adjacency-based approaches even in that case.

2.1.1 Contributions

To summarize, we present a labeling scheme for RDF data that

– generalizes interval based tree labeling schemes such as the pre-/post-encoding [6]
or the labeling schemes used in SPEX [33, 31] and CAA [30] to arbitrary graphs.
It combines a fast adjacency test (at worst logarithmic in the number of nodes)
with often significantly lower storage than adjacency-based schemes (including ad-
jacency lists), see Section 2.4.

3 For clarity of presentation, we omit technical details of RDF not relevant for this discussion.
For instance, which URLs (if any) are chosen to identify the emperors and provinces is of
no concern here. We also depict rdf:label by adjacent labels, rdf:type triples through
different node shapes, ex:father-of edges black, and ex:ruled edges dotted blue.

2 Labeling RDF Graphs for Linear Time and Space Querying 5

data single, ground triple pattern acyclic basic graph pattern full graph pattern

tree O(logn),O(1) O(q ·n) O(nqg + q ·n)
 O(logn),O(1) O(q ·n) O(nqg + q ·n)

graph O(logn),O(n2) O(q ·n2) O(nqg + q ·n2)

Table 2.1. Complexity of query evaluation with the -labeling (time and space complexity
are the same in all cases except for single, ground triple pattern on graphs, where the space
complexity is given after the time complexity); q query size, n data size, qg: number of “graph”
variables, i.e., variables with multiple incoming query edges)

– retains the most important properties of tree labeling schemes (see Section 2.3.1),
yet extends them to a significantly larger class of graphs, so-called s, than any
previous labeling scheme (see Section 2.3.2 on previous graph labeling schemes):
1. constant-time adjacency (and reachability) test,
2. constant label size, thus linear overall size of the labeling,
3. linear time enumeration of adjacent (and reachable) nodes,
4. polynomial time labeling algorithm.

The formal definition of s and their properties are given in Section 2.5.
– performs on tree data as good as the best known tree labeling schemes and thus is

ideally suited when both tree, , and general graph data is to be processed, see
Section 2.6.

– allows the linear time and space evaluation of acyclic SPARQL queries and pro-
vides an efficient basis for full SPARQL implementation, see Section 2.6.

Table 2.1 summarizes the complexity results for evaluating three subsets of SPARQL
based on the -labeling: for single, ground triple patterns (i.e., testing whether a graph
contains a given triple of only named resources), which corresponds to testing adja-
cency between the two resources in the triple; for acyclic (as in [21]) SPARQL graph
patterns with variables and filters; for full SPARQL graph patterns. Note, that there is
no penalty at all to going from tree data to data, but arbitrary graph data does incur
a logarithmic penalty in time (and a linear penalty in space).

The rest of this chapter is organized as follows: First we briefly introduce or revisit
a few notions on RDF and SPARQL needed in the rest of the paper (Section 2.2).
Then we investigate existing labeling schemes for RDF and graph data in general, with
a brief perspective also on XML labeling schemes (Section 2.3), as these form the
basis for many RDF labeling schemes. Section 2.4 finally introduces the general -
labeling scheme and its properties on arbitrary graphs. For trees and the novel class
of s, it is shown in Section 2.5 that a -labeling with constant label size can be
found in polynomial time. In Section 2.6 we briefly discuss how the -labeling is
used to evaluate acyclic and full SPARQL queries and even some nSPARQL [38] path
expressions.

6 T. Furche et al.

2.2 Preliminaries—RDF as Graphs

In this section, we briefly revisit basic notions about RDF and RDF queries, in particular
SPARQL queries.

RDF graphs contain simple statements about resources (which, in other contexts,
are be called “entities”, “objects”, etc., i.e., elements of the domain that may partake
in relations). Statements are triples consisting of subject, predicate, and object, all of
which are resources. If we want to refer to a specific resource, we use (supposedly
globally unique) URIs, if we want to refer to a resource for which we know that it exists
and maybe some of its properties, we use blank nodes which play the role of existential
quantifiers in logic. However, blank nodes may not occur in predicate position. Finally,
for convenience, we can directly use literal values as objects.

RDF may be serialized in many formats (for a recent survey see [5]), such as RD-
F/XML [4], an XML dialect for representing RDF, or Turtle [3] which is also used in
SPARQL. The following Turtle data, e.g., describes a number of (fictitious) articles,
their titles, creators, and relations to conferences.

1 @prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix dct: <http://purl.org/dc/terms/> .

3 @prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
@prefix bib: <http://www.edutella.org/bibtex#> .

5 @prefix ulp: <http://example.org/roman/libraries/ulpia#> .
ulp:cicero-46-wt a bib:Article ; dc:title "Wax Tablets" ;

7 dc:creator [a rdf:Seq ;
rdf:_1 ulp:cicero ; rdf:_2 ulp:tiro] ;

9 ulp:cites ulp:hirtius-47-bc ;
dct:isPartOf ulp:conf-46-mutina .

11 ulp:cicero a bib:Person ; vcard:FN "M. T. Cicero" .
ulp:tiro a bib:Person ; vcard:FN "M. T. Tiro" .

13 ulp:hirtius-47-bc a bib:Article ;
ulp:cites ulp:cicero-46-wt ;

15 dct:isPartOf ulp:conf-46-mutina .
ulp:conf-46-mutina a bib:InProceedings ;

17 rdfs:label "Storage Media" .

Following the definition of namespace prefixes used in the remainder of the Turtle
document (omitting common RDF namespaces), each line contains one or more state-
ments separated by colon or semi-colon. If separated by semi-colon, the subject of the
previous statement is carried over. E.g., line 6 reads as ulp:cicero-46-wt is a bib:Article
and has dc:title “Wax Tablets”. Lines 7–9 show a blank node: the creator of the article
is neither Cicero nor Tiro, but some unnamed resource that is a sequence of those two
authors.

For the rest of this chapter, we consider RDF as plain data without much consid-
eration for concepts of interpretations, models, entailment, etc. However, as holds for
SPARQL, the discussed labeling could as well be applied on an entailment graph con-
taining inferred (rather than explicitly stated) triples.

It is also worth pointing out that all graphs we consider in this chapter are directed
and we use “adjacent” and “reachable” accordingly. That is, a node m′ is adjacent to m

2 Labeling RDF Graphs for Linear Time and Space Querying 7

if there is an edge from m to m′ (the other direction does not matter), m′ is reachable
from m if there is a directed path from m to m′.

Fig. 2.2 Exemplary RDF Graph: RDF Conference Data

1

4
5
: 1

6
7
: 1

8

9

:FN

2

10

:

1

:_1

2

11

12

:FN

1

:_2

3

:

2

13

:

3

:PO

5

14

:PO

3

2
:

1

3

:

2

:

2

:

1

:

4

:

2

ulp:conf-46-mutina

ulp:cicero-46-wt

‘Wax Tablets’

_:blank

rdf:Seq

ulp:cicero

bib:Person

‘M. T. Cicero’

ulp:tiro

‘M. T. Tiro’

bib:Article

ulp:hirtius-47-bc

‘Storage Media’

bib:InProceedings

This RDF data is mapped to a graph as shown in Figure 2.2. There is a single node
in the graph for each named resource that occurs in the RDF data. The same literal may
occur multiple times. Each blank node is depicted as a rectangular node (e.g., 6). As in
Turtle [3] and SPARQL, blank nodes are labeled with local identifiers prefixed by _:.
There is one node for each blank node in the RDF data, though the graph does not need
to be lean.

2.2.1 Queries on RDF Graphs

We consider three types of queries on RDF graphs, all sub-languages of SPARQL.
The first and simplest type, called 1-SPARQL queries, corresponds to single, ground
SPARQL triple patterns. For instance, the triple pattern

1 ulp:cicero vcard:FN ‘M. T. Cicero’

matches a given graph if the given triple occurs in the graph, i.e., if there is a vcard:FN
labeled edge from ulp:cicero to a literal node with label M. T. Cicero.

The second type of queries, called A-SPARQL queries, are essentially acyclic con-
junctive queries on RDF and correspond to acyclic SPARQL basic graph patterns. For
instance, the basic graph pattern4

4 We use the variant syntax for SPARQL discussed in [37] to ease the presentation.

8 T. Furche et al.

1 ?a rdf:type bib:Article
AND ?a dc:creator ?p

3 AND ?p vcard:FN ‘M. T. Cicero’

selects from a given graph all articles created by someone with the full-name “M. T.
Cicero” and binds the article to ?a and the creator to ?p. We only allow acyclic basic
graph patterns:

Definition 1 (Acyclic Basic Graph Pattern). Let P be a basic SPARQL graph pattern.
Then P is acyclic, if no variable in P depends directly or indirectly on itself.

We say a variable ?x depends (directly) on a variable ?y (a resource R) if there is
a triple pattern ?x P ?y (?x P R) for some property P. We say a variable ?x depends
indirectly on a variable ?y if there are variables or resources z1, . . . , zl such ?x depends
on z1, z1 on . . . , and zl depends on ?y.

The most common case of acyclic graph patterns are tree patterns, where the vari-
ables of the query form a proper hierarchy.

The third type of queries are full SPARQL graph patterns. They may be cyclic and
include UNION, MINUS, OPTIONAL, FILTER. We use the variant syntax for SPARQL
discussed in [37] to ease the definition of syntax and semantics of the language. We omit
named graphs and assume that all queries are on the single input graph. An extension
of the discussion to named graphs is easy (and partially demonstrated in [39]) but only
distracts from the salient points of the discussion.

The full grammar of SPARQL graph patterns considered here is as follows:

〈pattern〉 ::= 〈triple〉 | ‘{’ 〈pattern〉 ‘}’
| 〈pattern〉 ‘FILTER’ ‘(’ 〈condition〉 ‘)’ |

| 〈pattern〉 ‘AND’ 〈pattern〉 | 〈pattern〉 ‘UNION’ 〈pattern〉
| 〈pattern〉 ‘MINUS’ 〈pattern〉 | 〈pattern〉 ‘OPT’ 〈pattern〉

〈triple〉 ::= 〈resource〉‘,’ 〈predicate〉‘,’ 〈resource〉
〈resource〉 ::= 〈iri〉 | 〈variable〉 | 〈literal〉 | 〈blank〉
〈predicate〉 ::= 〈iri〉 | 〈variable〉
〈variable〉 ::= ‘?’ 〈identifier〉
〈condition〉 ::= 〈variable〉 ‘=’ 〈variable〉 | 〈variable〉 ‘=’ (〈literal〉|〈iri〉)

| ‘BOUND(’ 〈variable〉 ‘)’ | ‘isBLANK(’ 〈variable〉 ‘)’
| ‘isLITERAL(’ 〈variable〉 ‘)’ | ‘isIRI(’ 〈variable〉 ‘)’
| 〈negation〉 | 〈conjunction〉 | 〈disjunction〉

〈negation〉 ::= ‘¬’〈condition〉
〈conjunction〉 ::= 〈condition〉 ‘∧’ 〈condition〉
〈disjunction〉 ::= 〈condition〉 ‘∨’ 〈condition〉

We pose some additional syntactic restrictions: SPARQL graph patterns must be
error-free SPARQL expressions, i.e., for each FILTER expression all variables occur-
ring in the (right-hand) condition must also occur in the (left-hand) pattern. This can
easily be ensured a-priori and queries violating this condition rewritten to the canonical
false FILTER expression (as FILTER expressions with unbound variables raise errors
which, in turn, are treated as a false filter, see “effective boolean value” in [40]).

Following [39], we define the semantics of SPARQL graph patterns based on sub-
stitutions. A substitution θ = 〈v1,n1, . . . ,vk : nk〉 with vi ∈ Vars(Q)∧ ni ∈ nodes(D)} for

2 Labeling RDF Graphs for Linear Time and Space Querying 9

a query Q over an RDF graph D maps some variables from Q to nodes in D. For a
substitution θ we denote with dom(θ) the variables mapped by θ. Given a triple pattern
t = (s, p,o), we denote with tθ the application of θ to t replacing all occurrences of vari-
ables mapped in θ by their mapping in t. For a triple (s, p,o) containing no variables,
we say (s, p,o) ∈ D if there is a p labeled edge between s and o labeled nodes in D.

On sets of substitutions the usual relational operations Z, ∪, and \ apply. We define
the (left) semi-join R X S = (R Z S)∪ (R \S).

�
(s, p,o)

�D
Subst = {θ : dom(θ) = Vars((s, p,o))∧ tθ ∈ D}�

pattern1 ANDpattern2
�D

Subst =
�

pattern1
�D

Subst Z
�

pattern2
�D

Subst�
pattern1 UNIONpattern2

�D
Subst =

�
pattern1

�D
Subst∪

�
pattern2

�D
Subst�

pattern1 MINUSpattern2
�D

Subst =
�

pattern1
�D

Subst \
�

pattern2
�D

Subst�
pattern1 OPTpattern2

�D
Subst =

�
pattern1

�D
Subst X

�
pattern2

�D
Subst�

patternFILTER condition
�D

Subst = {θ ∈
�

pattern
�D

Subst : Vars(condition) ⊂ dom(θ)
∧~condition�D

Bool (θ)}

~condition1∧ condition2 �
D
Bool (θ) = ~condition1 �

D
Bool (θ)∧~condition2 �

D
Bool (θ)

~condition1∨ condition2 �
D
Bool (θ) = ~condition1 �

D
Bool (θ)∨~condition2 �

D
Bool (θ)

~¬condition�D
Bool (θ) = ¬~condition�D

Bool (θ)

~BOUND(?v)�D
Bool (θ) = vθ , nil

~isLITERAL(?v)�D
Bool (θ) = vθ ∈ L

~isIRI(?v)�D
Bool (θ) = vθ ∈ I

~isBLANK(?v)�D
Bool (θ) = vθ ∈ B

~?v= literal�D
Bool (θ) = vθ = literal

~?u=?v�D
Bool (θ) = uθ = vθ∧uθ , nil

Table 2.2. Semantics for SPARQL graph patterns

Using these definitions, Table 2.2 gives the semantics of SPARQL graph patterns
by means of ~ �D

Subst. It produces a set of substitutions (or bindings) for variables in
P. Triple patterns t (case 1) are evaluated to the set of substitutions θ such that the tθ
contains no more variables and falls in D. Pattern compositions AND, UNION, MINUS,
and OPT are reduced to the appropriate operations on sets of substitutions (cases 2–4).
FILTER expressions (case 5) are again evaluated straightforwardly, as restrictions on
the substitutions returned by the (left-hand) pattern with the boolean formula that is
provided by ~ �D

Bool for the condition of the filter expression. Vars(condition) ⊂ dom(θ)
is not strictly necessary as it merely restates that we only consider error-free SPARQL
queries.

The semantics of A-SPARQL and 1-SPARQL patterns are the obvious specializa-
tions of the semantics for full SPARQL patterns. For 1-SPARQL patterns this yields a

10 T. Furche et al.

boolean semantics, with {} as false and {∅} as true (the empty substitution is a solution,
if t∅ = t ∈ D).

2.2.2 Triple Patterns and Adjacency

Triple patterns as in 1-SPARQL are a form of adjacency test between the two named
resources (or the named resource and the literal) in the given triple pattern. In this
chapter, we often prefer to speak of adjacency test to emphasize the general nature
of -labelings. In particular, whether the edges are labeled or not has no impact on
the labeling: If the number of edge labels is fixed and small, we can choose different
-labelings for each of the induced sub-graphs. Otherwise, we can, e.g., choose to
represent edges as special nodes (connected to its source and sink) with a label property
for storing the edge label. We can also choose a mixture of both approaches, e.g., to use
separate -labelings for each of the k most used edge labels and the second approach
for all remaining edge labels.

It is worth noting that this holds, more or less, for most labeling schemes and thus
allows us to consider also labeling schemes intended for un-labeled graph data for RDF,
see Section 2.3.2.

Though not part of SPARQL, reachability is also a property that is often useful in
graph queries. There are already proposals for extending SPARQL with reachability or
even full path expressions [38, 9]. Here, we only mention in passing that -labelings
can handle reachability testing just as well as adjacency testing. For more details see
Section 2.6.4.

2.3 State-of-the-Art—Labeling Schemes for RDF Graphs

Though RDF and, in particular, SPARQL are fairly new technologies, there is signifi-
cant relevant related work on labeling schemes for graph data in general. Though little
of that has been specifically considered for RDF, most is easily adapted to RDF.

Before turning to graph labeling schemes, we briefly revisit labeling schemes for
tree data, as most graph labeling schemes are extensions of one of the tree label-
ing schemes. Moreover, tree labeling schemes have seen significant attention from
academia and implementation in most XML-enabled relational databases.

2.3.1 Foundation: Tree Labeling

Labeling schemes of XML data fall into one of three categories: interval-based, prefix-
based, and arithmetic. Interval-based labeling schemes order the nodes of the tree in
one or more orders and describe the structural relations (such as child, descendant,
etc.) as windows over the assigned orders. For instance, the pre-/post-encoding (first
proposed in [15] and adapted for use in XML querying in [22, 6]) assigns each node its
position in pre- and post-order traversal. The descendants of a node are then all nodes
with higher pre- and lower post-order number. With an additional label for the nesting
level, all 13 XPath axes can be expressed analogously. Prefix-based labeling schemes

2 Labeling RDF Graphs for Linear Time and Space Querying 11

such as the Dewey ID-based ORDPATH [35] (used in Microsoft SQL server for XML
storage) assign each node a label, such that the label of a parent is the prefix of the labels
of all its children. For instance, if the parent is labeled 1.7.2, its children are labeled
1.7.2.x for some (positive or negative integer x). Notable is that ORDPATH leaves gaps
in the assignment of the child portions of a label to allow updates without relabeling
the entire tree. However, prefix-based labeling schemes are, in general, best suited for
rather regular, flat trees. If the tree becomes too deep or fan-outs vary significantly the
label sizes quickly degenerate (up to O(n) where n is the number of nodes in the tree).
Finally arithmetic labeling schemes (such as BIRD [45]) use some kind of arithmetic
relation between labels to express child-parent, ancestor-descendant relationships. For
example, prime numbers are assigned to the leaf nodes in the tree and labels of parent
nodes become the product of the labels of their child nodes. Thus testing whether a
node is an ancestor of another one subsumes to testing whether the label of the first
node is a multiple of the label of the second node. Here we focus primarily on interval-
based labeling schemes, as these have been extended to graph data and are particularly
well suited for large data sets (where prefix-based labeling schemes often fail due to the
large label size and arithmetic labeling schemes often fail due to the high computational
cost for computing a labeling). For a more detailed comparison of labeling schemes for
XML see [42].

Aside of labeling schemes as separate indices (often for relational storage and ac-
cess of XML), it is also worth to briefly consider different approaches for XML query
evaluation as these often exploit properties of tree data similar to those exploited by
interval-based labelings:

There are five approaches to XML query evaluation that are particularly relevant for
a comparison with interval-based labeling schemes. The time and space complexity for
evaluating various classes of queries (path, tree, and graph queries) on various classes of
data (tree, DAG, graph) are given in Table 2.3. Note, that in all cases we consider point-
ers of constant size (as in most related work [8], [31], and [30]). In fact, all approaches
need an additional logn multiplicative factor if pointer size is taken into consideration.
The assumption of constant pointer (or label) size is reasonable in practice, as these are
usually stored in attributes of a reasonably sized, constant length numerical type such
as SQL’s INT or BIGINT.

The first approach, dubbed structural joins [2], is predominantly used in relational
storage of XML. It uses some form of labeling scheme, here pre-/post-encoding as in
[6], to find nodes that fulfill each of the structural conditions of the query and joins the
result (either using standard relational joins or using a tree-aware join such as the stair-
case join [23]). This results in a very flexible evaluation technique (it can, e.g., deal with
all 13 XPath axes), but is not quite as space efficient as more specialized approaches.
Though structural join approaches can be easily extended to graph data, they do not
perform well on graph data. -labelings can be easily integrated into structural join
approaches, but as we illustrate in Section 2.6.2 a specialized interval join yields even
better results (linear time and space processing).

In contrast to structural join approaches, twig (or stack) join approaches [8, 28, 11,
12] use a single (“holistic”) operator for matching tree patterns. They are limited to tree
and DAG data and only consider child and descendant relations. The basic idea of twig

12 T. Furche et al.

approach query data time space

Structural Joins [2, 6] path tree O(nqa + q ·n · logn) O(nqa + q ·n2)
tree tree/DAG O(nqa + q ·n · logn) O(nqa + q ·n2)
graph tree O(nq) O(nq)
graph graph O(nq) O(nq)

Twig or Stack Joins [8] tree (c/d) tree O(q ·n) O(q ·n + n ·d)
tree (c/d) DAG O(q ·n2 + e) O(q ·n + e)

SPEX (streaming) [32, 31] tree tree O(q ·n2) O(q ·n ·d)

CAA [30] tree tree O(q ·n · logn ·d) O(q ·n)

-labeling & Interval Join tree (c/d) tree O(q ·n) O(q ·d)
tree tree, O(q ·n) O(q ·n)
tree graph O(q ·n2) O(q ·n2)
graph tree, O(nqg + q ·n) O(nqg + q ·n)
graph graph O(nqg + q ·n2) O(nqg + q ·n2)

Table 2.3. Comparison of Related Approaches. n: number of nodes in the data, d: depth, resp.
diameter of data; e: number of edges; q: size of query, qa: number of result or answer variables;
qg: number of “graph” variables, i.e., variables with multiple incoming query edges

join approaches is the use of one stack per query variable (or XPath step) containing
nodes that may be matches for that variable. Relations between such potential matches
are established in form of explicit parent pointers. However, since queries may only
contain child and descendant relations, at most d such parent pointers may exist per
node. The essential observation from twig joins is that, we need to limit the space (and
management overhead) for describe the relations between potential matches of different
variables. In twig joins, the combination of tree data and tree queries with only child and
descendant relations together with an efficient stack management ensures this property.
Similarly, the evaluation of A-SPARQL using a specialized interval join as discussed
in Section 2.6.2 uses -labelings to represent relations and ensures that, if the data is
a tree or , the relations between potential matches can always be represented by a
linear space labeling. Thus, on tree and data -labelings with the interval join
are actually more space efficient and as fast as twig joins on tree data, yet are not limited
to only child and descendant relations.

Twig joins can be considered a hybrid of in-memory and streaming evaluation ap-
proach. Specialized streaming engines for XML query evaluation, such as SPEX [33],
also often use stacks for collection potential matches. In contrast to twig joins, SPEX
buffers nodes centrally and manages only annotations (or conditions) that represent re-
lations among potential matches in the stacks of its transducers (roughly, one for each
query variable). SPEX compacts these annotations into intervals where possible, but
(partially due to its streaming nature) can not always achieve this compaction as the
-labeling scheme can on tree and data. SPEX can process all forward [34] XPath
axes, but is limited to tree data.

2 Labeling RDF Graphs for Linear Time and Space Querying 13

The approach closest in spirit to ours are the complete answer aggregates (CAA)
[30]. Like twig joins and other polynomial approaches to XPath tree query processing
(e.g., [20]), the (potential) answers for each query variable are stored separately. Un-
like the other approaches (and like -labelings) the relations between these potential
answers may be described using intervals (rather than lists of pointers or keys). CAAs
are unique among the discussed approaches in that they always store answers for all
query variables (therefore complete answer aggregates), which is helpful in the context
of query refinement and exploration of the database, but otherwise often undesirable.

2.3.2 Reachability in Graphs

When we turn from tree data to graph data, the use of labeling schemes becomes less
predominant. However, there have been a number of approaches for exploiting labeling
schemes to provide an efficient test for reachability in graph data. For RDF, as discussed
in [13] and [43], this is particularly relevant as these approaches allow subsumption in
RDF. Though SPARQL does not provide specific means for reachability queries, several
extensions for SPARQL, most notably nSPARQL [38], have been proposed that include
such support. Furthermore, SPARQL can be used to query also, e.g., the RDFS entail-
ment (rather than the raw) graph where the subsumption is expanded. For either case
labeling schemes can be exploited: In the latter case, we can use the -labeling scheme
as for adjacency testing (on the expanded relation). However, it is often preferable not
to expand the reachability relation a-priori. We call this case ad-hoc reachability test.

Considerable research on indexing arbitrary graph data for ad-hoc reachability test-
ing has basically fallen into two classes. Table 2.4 summarizes the most relevant ap-
proaches for comparison with the -labeling. As baselines, we also include the naive
storage of the full reachability matrix as well as the online (shortest path) computation
with no index at all. For large graphs, neither of these baseline approaches is feasible.
Therefore, two classes of approaches have been developed that allow with significantly
lower space to obtain sub-linear time for membership test:

The first class is based on the idea of a 2-hop cover [14]: Instead of storing a full
reachability matrix, we allow that reachable nodes are reached via at most one other
node (i.e., in two “hops”). More precisely, each node n is labeled with two connection
sets, in(n) and out(n). in(n) contains a set of nodes that can reach n, out(n) a set of
nodes that are reachable from n. Both sets are assigned in such a way, that a node m
is reachable from n iff out(n)∩ in(m) , ∅. Unfortunately, computing the optimal 2-hop
cover is NP-hard. Approximation algorithms [41] that can provide very good guarantees
have been developed, but still require rather significant time for index computation.

A different approach [1, 10, 44, 43] is to use interval encoding for labeling a span-
ning tree of the graph and treating the remaining non-tree edges separately. This allows
for sublinear or even constant membership test, though constant membership test incurs
lower but still considerable indexing cost, e.g., in Dual Labeling [44] where a full tran-
sitive closure over the non-tree edges is build. GRIPP [43] and SSPI [10] use a different
trade-off by attaching additional interval labels to non-tree edges. This leads to linear
index size and time at the cost of increased query time.

In comparison, the -labeling combines many of the best characteristics of these
approaches: It is even better suited to sparse, tree-like graphs than interval encoding

14 T. Furche et al.

approach reachability test time index time index size

No index [36] O(n + e) O(n + e) O(n + e)
Full Reachability Matrix O(1) O(n3) O(n2)

2-Hop [14] O(
√

e) ≤ O(n) O(n4) O(n ·
√

e)
HOPI [41] O(

√
e) ≤ O(n) O(n3) O(n ·

√
e)

Graph labeling [1] O(n) O(n3) O(n2)
SSPI [10] O(e−n) O(n + e) O(n + e)
Dual labeling [44] O(1) O(n + e + e3

g) O(n + e2
g)

GRIPP [43] O(e−n) O(n + e) O(n + e)

CIG labeling on trees,s O(1) O(e) O(n)
—- on arbitrary graphs O(log(1.5 · copt)) < O(logn) O(n3) O(1.5 · iopt) < O(n2)

Table 2.4. Cost of Reachability Test in Graph Data. n,e: number of nodes, edges in the data, eg:
number of non-tree edges, copt the number of intervals needed to cover the children of a single
node in an optimal -labeling and iopt the total sum of these intervals.

approaches (as it provides guaranteed constant reachability test not only for trees but
also for s). At the same time, we can give very strong guarantees for maximum
time (and space) for reachability testing on general graphs (see Section 2.4.3). These
guarantees come with an increased indexing time (O(n3)), yet we can also choose to
spend less time indexing and choose a rougher heuristics.

2.4 -Labeling Scheme

The -labeling scheme is designed around a generalization of interval labels, called
here -labeling. -labelings provide flexible, yet simple description of arbitrary rela-
tions with attractive properties: In essence, we map each node to a single (integer) label
and describe the children of each node as a set of intervals over the above mapping.

Definition 2 (-Labeling). Let G = (N,E) be an (arbitrary) graph. Then a -
labeling L of G, is a pair (l,I) such that

1. l : N → N|N| is a bijective labeling function that assigns to each node in G an
(integer) label from {1, . . . , |N |} = N|V |.

2. I : N → 2N|N |×N|N | is a mapping from nodes in G to sets of closed, non-empty, non-
overlapping, non-adjacent intervals over N|N|.

3. I(n) covers all adjacent nodes of n for each n ∈ N, i.e.,

{n′ ∈ N : (n,n′) ∈ N} = {n′ ∈ N : ∃[s,e] ∈ I(n) : s ≤ l(n′) ≤ e}.

For an interval [a,b] we say that [a,b] “covers” the nodes with a ≤ l(n) ≤ b. Recall,
that an interval [a,b] is closed, if their start and end point is part of the nodes covered
by the interval, and non-empty, if a ≤ b and thus at least one node is covered by the
interval. A pair of intervals [a,b] and [c,d] are called non-overlapping, if no node is

2 Labeling RDF Graphs for Linear Time and Space Querying 15

covered by both intervals, and non-adjacent if neither b = c nor d = a. Thus in a set of
closed, non-empty, non-overlapping, and non-adjacent intervals each index occurs in no
more than one interval (there is no start- or endpoint that is start- or endpoint of another
interval).

Compared to other interval labelings, it is worth pointing out that a -labeling uses
only a single integer label per node, but at the cost of requiring explicit descriptions of
the children intervals. The often used pre-/post-encoding [22] for trees, e.g., uses three
such labels (the pre- and the post-numer as well as the level of the node), but does not
need to explicitly store the interval boundaries (they follow from the labels) and can
cover multiple relations with these three labels.

However, the main difference is that most labeling schemes assign labels in a pre-
determined way (e.g., by means of a pre- and post-order traversal of the tree). The -
labeling, on the other hand, allows us to choose rather flexibly among possible orderings
(and thus labels) of the node. Thus, the -labeling scheme consists in the -labeling
together with an algorithm for generating that labeling. We will suggest such algorithms
for general graphs (Section 2.4.3), as well as trees and s (Section 2.5).

To emphasize this flexibility, it is worth explicitly stating that for each graph can be
labeled by some -labeling:

Theorem 1. For any graph G there exists a -labeling.

Proof. Let G = (N,E). Then we assign labels from N|N| to the nodes in N arbitrarily.
Given the resulting labeling function l, we set L(n) to the set of all intervals [l(n′), l(n′)]
where (n,n′) ∈ E. The resulting intervals are trivially closed, non-overlapping and non-
empty. As long as there are still adjacent intervals in any of the interval sets, we merge
those adjacent intervals into a single interval. This terminates after at most n merge
steps per node resulting in interval sets that are also non-adjacent.

The challenge is finding an optimal labeling for our purpose. For querying a single
relation, we call a -labeling optimal, if the total size of the interval labels is minimal
(the integer labels are always the same size).

Definition 3 (Optimal -Labeling). Let G = (N,E) be a graph and L a -labeling
for G. We call

∑
n∈N |I(n)| the size of L, denoted |L|. L is optimal for G iff there is no

other -labeling L′ for G with |L′| < |L|.

It turns out that for trees we can define several labeling strategies that yield a -
labeling with similar properties as a pre-/post-encoding, most notably with linear size
for the entire labeling (and constant per node size). With a slight extension it is also
possible to define a -labeling that can cover all forward XPath axes in one labeling.

In contrast to tree labelings such as pre-/post-encoding, the -labeling is, however,
flexible enough to be used also for many non-tree graphs. It turns out that it can even
provide constant reachability test for a significantly larger class of graphs than trees
(at linear size), see Section 2.5. Even on arbitrary graphs, we can still profit from a
-labeling compared to, e.g., a full (quadratic) reachability matrix or previous graph
labeling schemes (see Section 2.3.2 for an overview). Though finding the optimal -
labeling is NP-complete for general graphs, a polynomial 1.5 approximation exists that
gives very compact representations in most practical cases.

16 T. Furche et al.

Before we turn to the question how to compute an optimal -labeling, we first
summarize the main properties of a given -labeling (whether optimal or not), namely
its label size (Section 2.4.1 and the complexity of its adjacency test (Section 2.4.2).

2.4.1 Label Size

The first property to be investigated is the size of a -labeling. It is easy to give an
upper bound for arbitrary graphs:

Theorem 2. For any given graph G with n nodes and e edges, a -labeling uses ex-
actly n integer labels and O(e) intervals.

Proof. From the definition it follows directly that each node is associated with an in-
teger label. Furthermore, in the worst case each child of every node is covered by a
single interval (i.e., no two children are adjacent in the order of the nodes). Thus O(e)
total intervals are used. This is indeed the worst-case as intervals are closed non-empty,
non-overlapping, and non-adjacent.

We can also characterize the space complexity in terms of space used per node:

Proposition 1. For any given graph G with n nodes and e edges, each node m requires a
single integer label and an interval set label containing at most max(out-degree(m), 1

2 n)
intervals.

Proof. Again for the integer label this follows directly from the definition. For the in-
terval set label observe that m has out-degree(m) children that need to be covered by an
interval. Since all intervals are empty and non-overlapping, each does cover a node that
is not covered by any of the others and thus we can cover all out-degree(m) children
with at most out-degree(m) intervals. Furthermore, 1

2 n is an upper bound for the num-
ber of intervals per node, as if out-degree(m) > 1

2 n out-degree(m)− 1
2 n of the children

of m must have an integer label consecutive with one or more of the other children in
any order over the nodes. Thus no additional intervals are needed for these nodes.

The above are the label sizes for the adjacency relation on a given graph G. If
we consider the reachability relation on G the same considerations apply but wrt. the
reachability graph G′ of G. Thus the number of nodes remains the same, but the number
of edges increases to the number of pairs of reachable nodes which is, even for sparse
graphs, often close to O(n2).

Fortunately, this is in practice partially offset by the observation (see Section 2.5.1)
that both graphs with sparse and almost complete graphs are more likely s than
graphs that are neither.

2.4.2 Adjacency & Reachability Test

Given a -labeling (for the original graph or for the reachability graph), we can test
adjacency and reachability fairly efficiently:

2 Labeling RDF Graphs for Linear Time and Space Querying 17

Theorem 3. Let G be a graph with n nodes. Given any -labeling for G and two
nodes m,m′ we can test whether there is an edge from m to m′ in O(log im) where im is
the number of intervals in the interval set label of m (im ≤ max(out-degree(m), 1

2 n) by
Proposition 1).

Proof. When constructing a -labeling, we can easily assure that the intervals in each
interval set are stored ordered by start position (and thus by end position since they
are non-overlapping), e.g., by sorting them. Then testing whether m′ is a child of m
subsumes to looking up l(m′) in constant time, looking up I(m), performing a binary
search on the sorted intervals in I(m), see Figure 7. Obviously, the latter runs in log im.

Algorithm 1: Binary Search in Interval Set
input : nodes m,m′, -labeling (l,I)
output: true if (m,m′) ∈ E, false otherwise

first← 1; last← |I(m)| ;1

while first ≤ last do2

mid← first+last
2 ; [s,e]←I(m)[mid] ;3

if l(m′) < s then last←mid−1 ;4

else if l(m′) > e then first←mid + 1 ;5

else return true;6

return false;7

Again the same applies for reachability testing but on the reachability graph G′ for
G. Note, that the out-degree of a node is affected by the step from G to G′, but not the
number of nodes. Thus in both cases log n

2 is an upper bound.
In addition to testing adjacency and reachability, the iteration over the adjacent or

reachable nodes of a given node is an important operation for evaluating SPARQL. In
the optimal case, this iteration depends only on the number of these nodes and not on
the (size, shape, etc.) of the remaining graph. With a -labeling we obtain this optimal
case, simply by iterating over the ordered intervals in the interval set of each node:

Corollary 1. Let G be a graph with n nodes. Given any -labeling for G and a node
m we can iterate over the cm adjacent (reachable nodes) of m in O(cm).

2.4.3 Optimal -Labeling

So far we have only investigated the properties of -labelings in general, without
considering how to compute a “good” or even optimal -labeling. For an arbitrary
graph, it turns out that computing an optimal -labeling is hard:

Theorem 4. Let G be an arbitrary graph. Then computing an optimal -labeling for
G is -complete.

18 T. Furche et al.

Proof. In particular, it is -complete to determine whether there is a -labeling L for
G with |L| ≤ k.

Obviously we can find such a -labeling by guessing a suitable order and verifying
that L ≤ k in linear time.
-hardness is established by reduction from the consecutive block minimization

(or CBM) problem for binary matrices, first introduced in [29]. Following [18], the
consecutive block minimization problem is the problem of computing a permutation of
the columns of a binary matrix such that results in a matrix B with at most k consecutive
blocks of 1’s. In other words, B must not have more than k entries bi j such that bi j = 1
and either bi j = 0 or j = n. The problem remains -hard for quadratic matrices as well
as for sparse matrices.

A block of 1’s in row i in CBM corresponds to an interval in the interval set of node
l−1(i) in a -labeling: Each of the nodes covered by the interval is a child of l−1(i) and
thus the corresponding entry in the adjacency matrix of G is 1. As in CBM, we aim to
find a permutation of the nodes that minimize the number of such intervals where the
next node in the permutation is not a child of l−1(i), i.e., the corresponding entry in the
adjacency matrix is 0.

Thus the reduction is very easy: We just take the quadratic matrix (for which the
problem is still -hard) and consider it as adjacency matrix of the graph for which to
find an optimal -labeling. Given that labeling we can compute the matrix B as the
adjacency matrix of the graph where the columns are ordered by l.

Though finding an optimal -labeling is thus infeasible even for small graphs, [25]
proposes an 1.5 approximation algorithm for CBM based on a (fairly straightforward)
transformation to the traveling sales problem.

Corollary 2. Let G be an arbitrary graph. Then we can compute, in polynomial time, a
-labeling with a size that does not differ more than 50% from the optimal one (i.e., it
size is 1.5iopt where iopt is the optimal number of intervals for any -labeling).

More precisely, the computation is in O(n3) (it is dominated by the time for finding
a maximum matching in a graph).

2.5 -Labeling on Trees and s

We have established that -labelings on arbitrary graphs can give us logarithmic adja-
cency test and linear adjacency iteration, yet with optimal or near optimal -labelings
can have significantly smaller size than full adjacency lists or matrices.

However, -labelings have another desirable property: On certain graphs, includ-
ing all trees and forest, but extending significantly beyond, we can test adjacency in
constant time and require only constant labels (thus, linear total space).

In this section, we first characterize and illustrate the class of graphs where this
property holds and then show how to compute a -labeling with constant labels for
this class.

2 Labeling RDF Graphs for Linear Time and Space Querying 19

2.5.1 s: Sharing-Limited Graphs

In a sense, a graph with a -labeling with constant labels (called a) exhibits a
certain regularity: It limits the way child nodes may be shared among parents such that
two parents may share a node, but only if there is still a way to order the nodes such
that the shared nodes of both parents are adjacent to its non-shared nodes. This can be
seen as a generalization of similar restrictions on trees and the reachability graphs of
trees: In trees, each child has at most one parent and thus there is no sharing of child
nodes. In reachability graphs for trees (i.e., the graph for the transitive closure of the
edges of a tree), if two nodes share a child, then one is a descendant of the other and
thus all its children are shared with the other node. These differences are mirrored in
the way intervals for covering the children of nodes in these three structures behave:
Figure 2.3 illustrates how in a tree these intervals can be made not to overlap at all. In
the reachability graph for a tree they may be contained in each other, but no other form
of overlapping is allowed. In a these interval may overlap arbitrarily, but they still
must be single, continuous intervals. In an arbitrary graph the latter restriction is also
lifted, as seen above.

Fig. 2.3 Sharing of children in trees, reachability graphs over trees, and s

1

2 6 7

3 4 5 8 9

1

2 6 7

3 4 5 8 9

1 2 3 4 56 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 56 7 8 9
Tree:

Reachability Graph over Tree:

Continuous-Image Graph:

1 2 7

2
1

7

2
1

7
3

More formally, s are a proper superset of trees defined as follows:

Definition 4 (). Let G be a graph. Then G is called a continuous-image graph (or
) if there is a -labeling for G where all the interval set labels contain a single
interval only.

20 T. Furche et al.

Thus, a graph G = (N,E) is a if there is

1. a bijective labeling function l : N→N|N| that assigns to each node in G an (integer)
label from {1, . . . , |N |} = N|V |,

2. a partial mapping from nodes in G to closed, non-empty intervals I : N → N|N | ×
N|N | and

3. I(n) covers all adjacent nodes of n for each n ∈ N, i.e.,

{n′ ∈ N : (n,n′) ∈ N} = {n′ ∈ N : ∃[s,e] = I(n) : s ≤ l(n′) ≤ e}.

Essentially this is a slightly simplification of the conditions for a -labeling where
each node is assigned a single interval (or none).

In practice, we belief that s are fairly common, in particular where hierarchical or
mostly hierarchical ontologies as well as time-related (e.g., event) data is considered. If
relations, e.g., between Germany and kings, are time-related, it is quite likely that there
will be some overlapping, e.g., for periods where two persons were king of Germany at
the same time. Similarly, hierarchical data often has some limited anomalies that make
a modelling as strict tree data impossible. Both points are illustrated in Figure 2.1 where
we show the relationships (both by law and by blood) between emperors of the “Five
Good Emperors” (Edward Gibbon) period (roughly 2nd century A.D.) as well which
provinces they ruled (provinces not shown have been ruled by all of these emperors).5

Despite the rather complicated shape of the relations (they are obviously not tree-shaped
and there is considerable overlapping, in particular w.r.t. province rulership) the whole
graph is a and can be stored with constant size labels and its adjacency can be
queried in constant time.

2.5.2 Labeling s and Trees

The crucial remaining questions are whether we can distinguish s from graphs effi-
ciently and how to compute a -labeling for s.

For answering both questions, we have to observe once more that there is a related
problem from binary matrix theory (like the CBM for finding optimal -labelings of
arbitrary graphs): The consecutive ones property of binary matrix [16]. A binary matrix
is said to carry the consecutive ones property if there is a permutation of the columns
of that matrix such that the 1’s in each row are consecutive. Again the block of 1’s
corresponds to the -interval for the children of that row’s node.

Theorem 5. Let G be an arbitrary graph with e edges. Then determining whether G is
a and, if so, computing a -labeling with constant label size for G is possible in
O(e).

Proof. For the consecutive-ones problem [7] gives the first linear time (in the number
of nodes) algorithm based on so called PQ-trees, a compact representation for permu-
tations of rows in a matrix. More recent refinements in [24] and [27] show that simpler

5 The name and status of the province between the wall of Hadrian and the wall of Antonius
Pius in northern Britain is controversial. For simplicity, we refer to it as “Caledonia”, though
that actually denotes all land north of Hadrian’s wall.

2 Labeling RDF Graphs for Linear Time and Space Querying 21

Fig. 2.4 Limits of Continuous-image Graphs
1

2

1

3

2

4

5

2

6 72

1

1

1

2

4

1

5

2

2

31

2

1

algorithms, based on the PC-tree [26], can be achieved. To decide whether a given graph
is a we use the PC-tree algorithm on that graph’s adjacency matrix which runs in
O(e). If the matrix carries the consecutive ones property the graph is a and any of
the consecutive ones order in the PC-tree can be used to label the nodes of the graph.
The intervals are then computed accordingly and we obtain a single interval per node
(thus the node label is constant, one integer label and one interval). Both is possible in
O(e).

2.5.3 Properties of -labelings on s and Trees

The previous section establishes that s can be characterized and labeled in linear
time. However, we have yet to note the precise time and space complexities for adja-
cency/reachability testing with a -labeling. The same complexities as for s hold
also for trees (which are, after all, a special case of s) and are as good as those of the
best known complexities for tree-only labeling schemes such as the pre-/post-encoding.

Theorem 6. Let G be a (or tree, forest, reachability graph over a tree) with n nodes
and L a -labeling computed as in Theorem 5. Then the size of each node label is
constant and thus the overall space complexity of the -labeling O(n). Furthermore,
testing the adjacency of two nodes in G is possible in constant time.

Proof. The labels are constant by the construction in Theorem 5: A single interval is
needed to represent all children, as all children are consecutive in the computed order.
For testing the adjacency of two nodes m,m′ in G it suffices to test if {[s,e]}=I(m)∧ s≤
l(m) ≤ e.

2.5.4 Limitations and Extensions

Though s already cover many practical graphs, it is still worth considering the limits
of this class. There are even (fairly) simple graphs that are no s, see Figure 2.4. The
figure shows two graphs that are no s. Incidentally, both graphs are acyclic and, if
we take away any one edge in either graph, the resulting graph becomes a . The first
illustrates an easy to grasp sufficient but not necessary condition for being a non-: if
a node has at least three parents and each of the parents has at least one (other) child
not shared by the others then the graph can not be a .

22 T. Furche et al.

To overcome these limitations, -labelings can be extended in at least three aspects
while retaining the constant label size and constant adjacency test (for more details see
[46]):

1. We can allow more allow more than one, but still a constant number of k intervals
per node. It turns out, however, that already for k = 2 computing an optimal labeling
is -hard [19].

2. Another promising extension is to allow multiple integer labels per node, i.e., to
consider intervals over multiple orders. In some sense, this extensions generalizes
intervals over one dimension to those over multiple dimensions. However it has
been shown in [46] recently (by reduction from k-colorability) that finding an opti-
mal labeling for this extension also becomes -hard quickly (in fact, already for 2
orders).

3. Localizing maximum subgraphs also turns out to be an intractable problem (cf.
consecutive ones submatrix [18]).

Though these extensions cover additional graphs, we would, once more, have to rely
on heuristics or approximations for finding optimal labelings. This strongly indicates
that s are very much a “sweet spot” wrt. size of the class and complexity of the
labeling algorithm.

2.6 Evaluating SPARQL with -Labelings

The previous sections introduce the -labeling, its properties on arbitrary graphs, on
s, the novel class of graphs with constant time adjacency test, and on trees. In this
section, we use these results to sketch how to evaluate queries in the three SPARQL
dialects introduced in Section 2.2 efficiently.

For all three dialects, the first issue to address is how to label an RDF graph. Node
labels and typed nodes (the distinction between literals, URIs, and blank nodes) are
easily represented in a -labeling. However, we have to consider what to do with edge
labels which are not present in the plain directed graphs used so far for defining the
-labeling. There are two possibilities to dealing with edge labels:

1. The RDF graph can be transformed by introducing a new node of type edge-node
nl for each node n and edge label l if n has outgoing edges labeled with l. We
also add edges (n,nl) and one outgoing edge to each n′ with (n, l,n′) in the original
graph. Finally, we delete the edge (n, l,n′). The resulting graph has only unlabeled
edges and we can rewrite each query (s, p,o) to (s, p), (p,o), and edge-node(p).
This representation is obviously linear in the number of triples in the graph.

2. The graph induced by the edges of each edge label can be considered separately
and queries adapted to query the appropriate graph.

The first approach has advantages if the number of edge labels (i.e., properties)
in the RDF graph is very large and most properties occur infrequently. The second
approach requires slightly more space (at least one integer label per node and edge
label), but allows the use of different node orders for different edge labels. Thus graphs

2 Labeling RDF Graphs for Linear Time and Space Querying 23

that are, if we consider edges with any label, no , may turn out to be s if we
consider each edge label separately, which provides a significant advantage.

In the outlook (Section 2.7), we briefly sketch an extension of the -labeling
scheme where we aim to find compatible orders for multiple relations (edge sets) on
the same nodes. Such an extension allows us to combine the advantages of both ap-
proaches: Where necessary separate -labelings are created, but where possible the
integer labels are shared.

2.6.1 Evaluating 1-SPARQL

In the first dialect, 1-SPARQL, queries are single, ground triple patterns. Thus we only
need to look-up the nodes for the given subject and object (whether they are URIs,
literals, or blank nodes) and test adjacency wrt. the given property URI between the
two nodes.

Theorem 7. Evaluating a 1-SPARQL query on a -labeled graph G with n nodes takes
O(logn) time (regardless of the shape of G).

Proof. Finding the nodes and their labels for the given subject and object is in log |Σ |
(e.g., if data URIs are held in an appropriate dictionary) where Σ is the set of unique
URIs and literals that occur in the data. Obviously, |Σ | ≤ n. In both of the above rep-
resentations the adjacency test given the node labels is constant, if the RDF graph can
be represented as a . Otherwise the test is in logn. The overall complexity is in both
cases O(logn)

2.6.2 Evaluating A-SPARQL

For evaluating A-SPARQL a basic algorithm can be expressed as follows: Evaluate
each triple pattern separately and then join the resulting substitutions. The challenge
lies in representing the result of the join compactly. For acyclic queries we can achieve
a compact representation of the join as follows:

– For each variable v, store candidate nodes in form of their integer label and interval
sets for each dependent variable. Order these candidate nodes in the order of the
relation between v and its parent in the query (if there are multiple parents clone v,
but not its dependent variables). Initialize these candidate stores with all nodes and
the interval sets {[1, |N |]}. This can be done in O(n) as the nodes are stored in order
in the -labeling.

– For each triple pattern (v, p,v′) involving two variables v and v′, we look at each
of the candidates for v and intersect its current interval set over v′ with the one
retrieved from the -labeling for p. The intersection of ordered interval sets can
be performed in time linear in the total number of intervals over v′ in candidates
for v.

– For each conditions (such as URI labels, type restrictions) on a variable, we mark
all candidates for that variable that do not match that condition.

24 T. Furche et al.

– Finally, we compute the actual answers by iterating (bottom-up) over each candi-
date store and computing for each index in the store its new index, the index of
the next and the previous actual answer: For leave variables that is the first variable
that is not marked (including itself). For inner variables that is the first variable that
is not marked and for which the interval sets for each dependent variable are non
empty. Analog for the previous actual answer. Whenever we have computed the
actual answers of a variable v we adjust the indices of the parent variable(s) p as
follows: The start index of each interval in the interval set of a candidate for p is
advanced to the index of the next actual answer for p, the end index is reduced to
the index of the previous actual answer. If the interval is now empty, it is dropped.
This algorithm runs in time linear to the total number of candidates and intervals in
candidates of any variable.

Theorem 8. Evaluating an A-SPARQL query of size q on a -labeled graph G with n
nodes takes

1. O(q ·n) time and space if G is a tree or .
2. O(q ·n2) time and space otherwise.

Proof. In both cases, step 1 is performed O(q) times, thus takes in total O(q ·n) time.
For step 2 and 3 we distinguish between s and arbitrary graphs:
If G is a tree or then there is a single interval per node and relation. Step 2 is

performed once for triple pattern and at most n intervals are intersected (as each of the
at most n candidates for v only contains one interval over v′). Thus it takes in total at
most O(q ·n) time. Step 3 is performed once and takes at most O(q ·n) time as that is the
upper bound for the total number of intervals in all candidate answers.

If G is an arbitrary graph there are up to 1
2 n intervals per node and relation. Step 2

thus intersects at most n2 intervals and takesO(q ·n2) time. Step 3 is performed once and
takes at most O(q ·n2) time as that is the upper bound for the total number of intervals
in all candidate answers.

For the actual implementation, we adapt a number of aspects of the algorithm, in
particular the handling of marked nodes and the initialization that improve space usage
in most cases, but do not affect the complexity and are therefore omitted here.

2.6.3 Towards Full SPARQL

For a given SPARQL query, we essentially compute an A-SPARQL core of the query,
evaluate that core and then compute the rest of the query as in the relational algebra,
accessing the results of the A-SPARQL core when needed.

It is worth pointing out that we can add many of SPARQL features also to the
A-SPARQL core (without sacrificing the linear time evaluation). E.g., many forms of
UNION, most FILTER expressions, and some cases of OPTIONAL. Though UNION and
OPTIONAL somewhat complicate the evaluation algorithm sketched above, it is well-
worth in practice. None of these changes, however, changes the overall complexity sig-
nificantly and they are omitted here. For more details see [17].

2 Labeling RDF Graphs for Linear Time and Space Querying 25

Corollary 3. Evaluating a SPARQL query of size q with qg triples not covered by a
chosen A-SPARQL core of the query on a -labeled graph G with n nodes takes
O(nqg +q ·n) time and space on s and O(nqg +q ·n2) time and space on other graphs.

2.6.4 Towards Path Expressions

As discussed in Section 2.3.2, the -labeling is particularly well suited for reachabil-
ity graphs. Though SPARQL does not explicitly support reachability queries, it may
be evaluated, e.g., against the RDFS-entailment graph of a given RDF graph which
includes reachability semantics for, e.g., rdfs:subClassOf. Furthermore, -labelings
can be used to support efficient iteration and constant time reachability test for exten-
sions of SPARQL with reachability queries. For instance, nSPARQL [38] proposes such
and more powerful operators (full path expressions). The latter, unfortunately, can no
longer be iterated in time liner to the matches (rather than to the entire graph) or tested
in constant time, not even with -labelings.

2.7 Conclusion

In this chapter, we introduce the -labeling, a novel, easy and efficiently imple-
mentable, yet surprisingly powerful labeling schemes for trees and graphs. We show that
-labelings allow for constant time, constant per-node space adjacency (and reacha-
bility) testing not only on trees, but also on many graphs. We precisely characterize the
class of graphs with this property.
-labelings can be easily applied to RDF and give us linear time evaluation for

large classes of SPARQL queries on many RDF graphs. They also have the potential
to significantly speed-up the processing of general SPARQL queries, however current
indexing algorithms may prove to be too expensive for very large RDF graphs.

The development of more efficient heuristics and approximations for very large
RDF graphs is therefore clearly called for. On the other hand, it also worth investi-
gating how to increase the class of graphs which can still be queried in constant time,
even if we increase the indexing time (this is relevant, e.g., when indexing is done
infrequently and en-bloc as in search engines). In Section 2.5.4 we discussed several
such extensions, though optimal labeling algorithms turn out to be -complete even
for small extensions.

Another candidate is the exploitation of results on zero-partitionable property of
adjacency matrix. This is, in some sense, a generalization of the consecutive ones prop-
erty that s are based on: Intuitively in a zero-partitionable matrix we can push all 0s
either to the right or to the bottom: A binary matrix is zero-partitionable if every 0 can
be labeled either by R, in which case every position to its right must be an R labeled 0;
or by C, in which case very position below must be a C labeled 0. On a graph with a
zero-partitonable adjacency matrix we can still provide constant time and constant per-
node space adjacency testing though the class is a proper superclass of s. The best
known labeling algorithm is polynomial but with a very large constant in the exponent.
It is an open question whether the labeling is effective for realistic RDF graphs.

26 T. Furche et al.

Acknowledgements

The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
no 211932 (cf. http://www.kiwi-project.eu/).

References

1. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of transitive relationships in
large data and knowledge bases. In: Proc. ACM Symp. on Management of Data (SIGMOD),
New York, NY, USA, ACM (1989) 253–262

2. Al-Khalifa, S., Jagadish, H.V., Koudas, N., Patel, J.M., Srivastava, D., Wu, Y.: Structural
Joins: A Primitive for Efficient XML Query Pattern Matching. In: Proc. Int. Conf. on Data
Engineering, Washington, DC, USA, IEEE Computer Society (2002) 141

3. Backett, D.: Turtle—Terse RDF Triple Language. Technical report, Institute for Learning
and Research Technology, University of Bristol (2007)

4. Beckett, D., McBride, B.: RDF/XML Syntax Specification (Revised). Recommendation,
W3C (2004)

5. Bolzer, O.: Towards Data-Integration on the Semantic Web: Querying RDF with Xcerpt.
Diplomarbeit/diploma thesis, University of Munich (2005)

6. Boncz, P., Grust, T., van Keulen, M., Manegold, S., Rittinger, J., Teubner, J.: MonetDB/X-
Query: a fast XQuery Processor powered by a Relational Engine. In: Proc. ACM Symp. on
Management of Data (SIGMOD), New York, NY, USA, ACM Press (2006) 479–490

7. Booth, K.S., Lueker, G.S.: Linear Algorithms to Recognize Interval Graphs and Test for the
Consecutive Ones Property. In: Proc. of ACM Symposium on Theory of Computing, New
York, NY, USA, ACM Press (1975) 255–265

8. Bruno, N., Koudas, N., Srivastava, D.: Holistic Twig Joins: Optimal XML Pattern Matching.
In: Proc. ACM SIGMOD Int. Conf. on Management of Data, New York, NY, USA, ACM
Press (2002) 310–321

9. Bry, F., Furche, T., Linse, B., Pohl, A.: Xcerptrdf: A pattern-based answer to the versatile
web challenge. In: Proc. Workshop on (Constraint) Logic Programming (WLP). (2008)

10. Chen, L., Gupta, A., Kurul, M.E.: Stack-based algorithms for pattern matching on dags. In:
Proc. Int’l. Conf. on Very Large Data Bases (VLDB), VLDB Endowment (2005) 493–504

11. Chen, T., Lu, J., Ling, T.W.: On Boosting Holism in XML Twig Pattern Matching using
Structural Indexing Techniques. In: Proc. ACM SIGMOD Int. Conf. on Management of
Data, New York, NY, USA, ACM Press (2005) 455–466

12. Chen, Z., Gehrke, J., Korn, F., Koudas, N., Shanmugasundaram, J., Srivastava, D.: Index
structures for matching xml twigs using relational query processors. Data & Knowledge
Engineering (DKE) 60(2) (2007) 283–302

13. Christophides, V., Plexousakis, D., Scholl, M., Tourtounis, S.: On labeling schemes for the
semantic web. In: Proc. Int’l. World Wide Web Conf. (WWW), New York, NY, USA, ACM
(2003) 544–555

14. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and Distance Queries via 2-hop
Labels. In: Proc. ACM Symposium on Discrete Algorithms, Philadelphia, PA, USA, Society
for Industrial and Applied Mathematics (2002) 937–946

15. Dietz, P.F.: Maintaining order in a linked list. In: Proc. ACM Symp. on Theory of Computing
(STOC), New York, NY, USA, ACM (1982) 122–127

16. Fulkerson, D.R., Gross, O.A.: Incidence Matrices and Interval Graphs. Pacific Journal of
Mathematics 15(3) (1965) 835–855

2 Labeling RDF Graphs for Linear Time and Space Querying 27

17. Furche, T.: Implementation of Web Query Language Reconsidered: Beyond Tree and Single-
Language Algebras at (Almost) No Cost. Dissertation/doctoral thesis, Ludwig-Maxmilians
University Munich (2008)

18. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman (1979)

19. Goldberg, P.W., Golumbic, M.C., Kaplan, H., Shamir, R.: Four strikes against physical map-
ping of DNA. Journal of Computational Biology 2(1) (1995) 139–152

20. Gottlob, G., Koch, C., Pichler, R.: Efficient Algorithms for Processing XPath Queries. ACM
Transactions on Database Systems (2005)

21. Gottlob, G., Leone, N., Scarcello, F.: The Complexity of Acyclic Conjunctive Queries. Jour-
nal of the ACM 48(3) (2001) 431–498

22. Grust, T.: Accelerating XPath Location Steps. In: Proc. ACM Symp. on Management of
Data (SIGMOD). (2002)

23. Grust, T., van Keulen, M., Teubner, J.: Staircase Join: Teach A Relational DBMS to Watch
its (Axis) Steps. In: Proc. Int. Conf. on Very Large Databases. (2003)

24. Habib, M., McConnell, R., Paul, C., Viennot, L.: Lex-BFS and Partition Refinement, with
Applications to Transitive Orientation, Interval Graph Recognition and Consecutive Ones
Testing. Theoretical Computer Science 234(1-2) (2000) 59–84

25. Haddadi, S., Layouni, Z.: Consecutive block minimization is 1.5-approximable. Information
Processing Letters 108(3) (2008) 132–135

26. Hsu, W.L.: PC-Trees vs. PQ-Trees. In: Proc. Int’l. Conf. on Computing and Combinatorics.
Volume 2108 of LNCS. (2001)

27. Hsu, W.L.: A Simple Test for the Consecutive Ones Property. Journal of Algorithms 43(1)
(2002) 1–16

28. Jiang, H., Wang, W., Lu, H., Yu, J.X.: Holistic twig joins on indexed xml documents. In:
Proc. Int’l. Conf. on Very Large Data Bases (VLDB), VLDB Endowment (2003) 273–284

29. Kou, L.T.: Polynomial complete consecutive information retrieval problems. SIAM Journal
of Computing 6(1) (1977) 67–75

30. Meuss, H., Schulz, K.U.: Complete Answer Aggregates for Treelike Databases: A Novel
Approach to Combine Querying and Navigation. ACM Transactions on Information Systems
19(2) (2001) 161–215

31. Olteanu, D.: SPEX: Streamed and Progressive Evaluation of XPath. IEEE Transactions on
Knowledge and Data Engineering (2007)

32. Olteanu, D., Furche, T., Bry, F.: Evaluating Complex Queries against XML streams with
Polynomial Combined Complexity. In: Proc. British National Conf. on Databases (BNCOD).
(2003) 31–44 17 citations [Google Scholar].

33. Olteanu, D., Furche, T., Bry, F.: An Efficient Single-Pass Query Evaluator for XML Data
Streams. In: Data Streams Track,Proc. ACM Symp. on Applied Computing (SAC). (2004)
627–631 17 citations [Google Scholar].

34. Olteanu, D., Meuss, H., Furche, T., Bry, F.: XPath: Looking Forward. In: Proc. EDBT
Workshop on XML-Based Data Management. Volume 2490 of Lecture Notes in Computer
Science., Springer (2002) 160 citations [Google Scholar].

35. O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G., Westbury, N.: ORDPATHs: Insert-
friendly XML Node Labels. In: Proc. ACM Symp. on Management of Data (SIGMOD),
ACM Press (2004) 903–908

36. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM Journal of Computing
16(6) (1987) 973–989

37. Perez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of sparql. In: Proc. Int’l.
Semantic Web Conf. (ISWC). (2006)

38. Pérez, J., Arenas, M., Gutierrez, C.: nsparql: A navigational language for rdf. In: Proc. Int’l.
Semantic Web Conf. (ISWC). (2008) 66–81

28 T. Furche et al.

39. Polleres, A.: From sparql to rules (and back). In: Proc. Int’l. World Wide Web Conf.
(WWW), New York, NY, USA, ACM (2007) 787–796

40. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. Proposed recom-
mendation, W3C (2007)

41. Schenkel, R., Theobald, A., Weikum, G.: HOPI: An Efficient Connection Index for Complex
XML Document Collections. In: Proc. Extending Database Technology. (2004)

42. Su-Cheng, H., Chien-Sing, L.: Node labeling schemes in xml query optimization: A survey
and trends. IETE Technical Review 26(2) (2009) 88–100

43. Trißl, S., Leser, U.: Fast and practical indexing and querying of very large graphs. In:
Proc. ACM Symp. on Management of Data (SIGMOD), New York, NY, USA, ACM (2007)
845–856

44. Wang, H., He2, H., Yang, J., Yu, P.S., Yu, J.X.: Dual labeling: Answering graph reachability
queries in constant time. In: Proc. Int’l. Conf. on Data Engineering (ICDE), Washington,
DC, USA, IEEE Computer Society (2006) 75

45. Weigel, F., Schulz, K.U., Meuss, H.: The bird numbering scheme for xml and tree databases
– deciding and reconstructing tree relations using efficient arithmetic operations. In: Proc.
Int’l. XML Database Symposium (XSym). Volume 3671 of LNCS., Springer-Verlag (2005)
49–67

46. Weinzierl, A.: Interval-based graph representations for efficient web querying. Diplomar-
beit/diploma thesis, Ludwig-Maxmilians University Munich (2009)

Contents

2 Labeling RDF Graphs for Linear Time and Space Querying 1
Tim Furche (University of Munich), Antonius Weinzierl (University of
Munich), François Bry (University of Munich)

2.1 Introduction . 1
2.1.1 Contributions . 4

2.2 Preliminaries—RDF as Graphs . 6
2.2.1 Queries on RDF Graphs . 7
2.2.2 Triple Patterns and Adjacency . 10

2.3 State-of-the-Art—Labeling Schemes for RDF Graphs . 10
2.3.1 Foundation: Tree Labeling . 10
2.3.2 Reachability in Graphs . 13

2.4 -Labeling Scheme . 14
2.4.1 Label Size . 16
2.4.2 Adjacency & Reachability Test . 16
2.4.3 Optimal -Labeling . 17

2.5 -Labeling on Trees and s . 18
2.5.1 s: Sharing-Limited Graphs . 19
2.5.2 Labeling s and Trees . 20
2.5.3 Properties of -labelings on s and Trees . 21
2.5.4 Limitations and Extensions . 21

2.6 Evaluating SPARQL with -Labelings . 22
2.6.1 Evaluating 1-SPARQL . 23
2.6.2 Evaluating A-SPARQL . 23
2.6.3 Towards Full SPARQL . 24
2.6.4 Towards Path Expressions . 25

2.7 Conclusion . 25
References . 26

