Abstract
We propose a novel framework of autonomic intrusion detection that fulfills online and adaptive intrusion detection in unlabeled audit data streams. The framework owns ability of self-managing: self-labeling, self-updating and self-adapting. Affinity Propagation (AP) uses the framework to learn a subject’s behavior through dynamical clustering of the streaming data. The testing results with a large real HTTP log stream demonstrate the effectiveness and efficiency of the method.
Similar content being viewed by others
References
Wang, W., Masseglia, F., Guyet, T., Quiniou, R., Cordier, M.O.: A general framework for adaptive and online detection of web attacks. In: WWW, pp. 1141–1142 (2009)
Zhang, X., Furtlehner, C., Sebag, M.: Data streaming with affinity propagation. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML / PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 628–643. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, W., Guyet, T., Knapskog, S.J. (2009). Autonomic Intrusion Detection System. In: Kirda, E., Jha, S., Balzarotti, D. (eds) Recent Advances in Intrusion Detection. RAID 2009. Lecture Notes in Computer Science, vol 5758. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04342-0_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-04342-0_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04341-3
Online ISBN: 978-3-642-04342-0
eBook Packages: Computer ScienceComputer Science (R0)