Abstract
Eigenfaces are the classical features used in face recognition and have been commonly used with classification techniques based on Euclidean distance and, more recently, with Support Vector Machines. In speaker verification, GMM has been widely used for the recognition task. Lately, the combination of the GMM supervector, formed by the means of the Gaussians of the GMM, and SVM has resulted successful. In some works, dimensionality reduction transformations have been applied upon the GMM supervectors using Euclidean distance based classification methods to obtain eigenvoices. In this paper, eigenvoices will be used in a SVM system, and the fusion of eigenfaces and eigenvoices will be performed in a multimodal fusion. In addition to this, different feature and score normalization techniques will be applied before the classification process. The results show that the dimensionality reduction techniques do not improve the error rates provided by the GMM supervector and that the use of SVM and the multimodal fusion significantly increase the performance of the recognition systems.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bolle, R.M., Connell, J.H., Pankanti, S., Ratha, N.K., Senior, A.W.: Guide to Biometrics. Springer, New York (2004)
Ross, A., Nandakumar, K., Jain, A.: Handbook of Multibiometrics. International Series on Biometrics. Springer, New York (2006)
Turk, M.A., Pentland, A.P.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)
Jonsson, K., Kittler, J., Li, Y.P., Matas, J.: Support vector machines for face authentication. Image and Vision Computing 20(5-6), 369–375 (2002)
Reynolds, D.A., Quatieri, T.F., Dunn, R.: Speaker verification using adapted Gaussian mixture models. Dig. Signal Process 10(1-3), 19–41 (2000)
Thyes, O., Kuhn, R., Nguyen, P., Junqua, J.C.: Speaker identification and verification using eigenvoices. In: At: ICSLP 2000, Beijing, China, vol. 2, pp. 242–245 (2000)
Campbell, W.M., Reynolds, D.A.: Support Vector Machines Using GMM Supervectors for Speaker Verification. IEEE Signal Processing Letters 13(5), 308–311 (2006)
Jain, A.K., Nandakumar, K., Ross, A.: Score normalization in multimodal biometric systems. Pattern Recognition 38(12), 2270–2285 (2005)
Lüttin, J., Maître, G.: Evaluation Protocol for the Extended M2VTS Database (XM2VTSDB). IDIAP Communication 98-05, Martigny, Switzerland (1998)
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans. Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)
Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines (and other kernel-based learning methods). Cambridge University Press, Cambridge (2000)
Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge discovery 2, 121–167 (1998)
Ejarque, P., Hernando, J.: Bi-Gaussian Score Equalization in an Audio-Visual SVM-based Person Verification System. In: At: Interspeech, Brisbane, Australia (2008)
Bailly-Bailliere, E., Bengio, S., Bimbot, F., Hamouz, M., Kittler, J., Mariethoz, J., Matas, J., Messer, K., Popovici, V., Poree, F., Ruiz, B., Thiran, J.P.: The BANCA database and evaluation protocol. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 625–638. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ejarque, P., Hernado, J., Hernando, D., Gómez, D. (2009). Eigenfeatures and Supervectors in Feature and Score Fusion for SVM Face and Speaker Verification. In: Fierrez, J., Ortega-Garcia, J., Esposito, A., Drygajlo, A., Faundez-Zanuy, M. (eds) Biometric ID Management and Multimodal Communication. BioID 2009. Lecture Notes in Computer Science, vol 5707. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04391-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-04391-8_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04390-1
Online ISBN: 978-3-642-04391-8
eBook Packages: Computer ScienceComputer Science (R0)