Abstract
We introduce a method based on nonlinear system analysis to synchronize single-trial event-related potentials (ERPs) prior to averaging in order to account for trial-to-trial variability in processing speed. Results from artificial and real ERP-data are presented and our algorithm is shown to outperform existing solutions. The presented algorithms are available for download.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gibbons, H., Stahl, J.: Response-time corrected averaging of event-related potentials. Clinical Neurophysiology, 197–208 (2007)
Truccolo, W.A., Ding, M., Knuth, K.H., Nakamura, R., Bressler, S.L.: Trial-to-trial variability of cortical evoked responses: implications for the analysis of functional connectivity. Clinical Neurophysiology 113(2), 206–226 (2002)
Ihrke, M., Schrobsdorff, H., Herrmann, J.M.: Compensation for speed-of-processing effects in eeg-data analysis. In: Fyfe, C., Kim, D., Lee, S.-Y., Yin, H. (eds.) IDEAL 2008. LNCS, vol. 5326, pp. 354–361. Springer, Heidelberg (2008)
Ihrke, M., Schrobsdorff, H., Herrmann, J.M.: Denoising and Averaging Techniques for Electrophysiological Data. In: Wennberg, R., Perez-Velazquez, J.L. (eds.) Coordinated Activity in the Brain: measurements and relevance to brain function and behaviour. Springer, Heidelberg (2009)
Wang, K., Begleiter, H., Porjesz, B.: Warp-averaging event-related potentials. Clinical Neurophysiology 112(10), 1917–1924 (2001)
Eckmann, J.P., Kamphorst, S.O., Ruelle, D.: Recurrence plots of dynamical systems. Europhysics Letters 5, 973–977 (1987)
Marwan, N., Romano, M.C., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Physics Reports 438, 237–329 (2007)
Jeong, J., Kim, S., Han, S.: Non-linear dynamical analysis of the eeg in alzheimer’s disease with optimal embedding dimension. Electroenc. Clin. Neurophys. 106, 220–228 (1998)
Marwan, N., Meinke, A.: Extended recurrence plot analysis and its application to erp data. International Journal of Bifurcation and Chaos 14(2), 761–771 (2004)
Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time-series. Physical Review Letters 45(9), 712–716 (1980)
Kennel, M., Brown, R., Abarbanel, H.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A 45(6), 3403–3411 (1992)
Fraser, A., Swinney, H.: Independent coordinates for strange attractors from mutual information. Physical Review A 33(2), 1134–1140 (1986)
Marwan, N., Thiel, M., Nowaczyk, N.R.: Cross recurrence plot based synchronization of time series. Nonlinear processes in Geophysics 9(3-4), 325–331 (2002)
Schrobsdorff, H., Ihrke, M., Kabisch, B., Behrendt, J., Hasselhorn, M., Herrmann, J.M.: A Computational Approach to Negative Priming. Connection Science 19(3), 203–221 (2007)
Myers, C., Rabiner, L.: A level building dynamic time warping algorithm for connected word recognition. IEEE Trans. Acoustics, Speech, and Sig. Proc. 29(2), 284–297 (1981)
Picton, T., Hunt, M., Mowrey, R., Rodriguez, R., Maru, J.: Evaluation of brain-stem auditory evoked potentials using dynamic time warping. Electroenc. Clin. Neurophys. 71(3), 212–225 (1988)
Behrendt, J., Gibbons, H., Schrobsdorff, H., Ihrke, M., Herrmann, J.M., Hasselhorn, M.: Erp correlates of idendity negative priming. Psychophysiology (submitted, 2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ihrke, M., Schrobsdorff, H., Herrmann, J.M. (2009). Recurrence-Based Synchronization of Single Trials for EEG-Data Analysis. In: Corchado, E., Yin, H. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2009. IDEAL 2009. Lecture Notes in Computer Science, vol 5788. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04394-9_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-04394-9_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04393-2
Online ISBN: 978-3-642-04394-9
eBook Packages: Computer ScienceComputer Science (R0)