Skip to main content

Inverse Analysis from a Condorcet Robustness Denotation of Valued Outranking Relations

  • Conference paper
Algorithmic Decision Theory (ADT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5783))

Included in the following conference series:

Abstract

In this article we develop an indirect approach for assessing criteria significance weights from the robustness of the significance that a decision maker acknowledges for his pairwise outranking statements in a Multiple Criteria Decision Aiding process. The main result consists in showing that with the help of a mixed integer linear programming model this kind of a priori knowledge is sufficient for estimating adequate numerical significance weights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Roy, B., Bouyssou, D.: Aide Multicritère à la Décision: Méthodes et Cas. Economica, Paris (1993)

    Google Scholar 

  2. Jacquet-Lagrèze, E., Siskos, Y.: Assessing a set of additive utility functions for multicriteria decision making: the UTA method. European Journal of Operational Research 10, 151–164 (1982)

    Article  Google Scholar 

  3. Mousseau, V., Słowinski, R.: Inferring an Electre TRI model from assignment examples. Journal of Global Optimization 12(2), 157–174 (1998)

    Article  MathSciNet  Google Scholar 

  4. Mousseau, V., Dias, L.C., Figueira, J., Gomes, C., Clímaco, J.N.: Resolving inconsistencies among constraints on the parameters of an MCDA model. European Journal of Operational Research 147(1), 72–93 (2003)

    Article  MathSciNet  Google Scholar 

  5. Siskos, Y., Grigoroudis, E., Matsatsinis, N.F.: Uta methods. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 297–344. Springer, Boston (2005)

    Chapter  Google Scholar 

  6. Grabisch, M., Kojadinovic, I., Meyer, P.: A review of capacity identification methods for Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package. European Journal of Operational Research 186, 766–785 (2008)

    Article  MathSciNet  Google Scholar 

  7. Greco, S., Mousseau, V., Słowinski, R.: Ordinal regression revisited: multiple criteria ranking using a set of additive value functions. European Journal of Operational Research 191(2), 415–435 (2008)

    Article  MathSciNet  Google Scholar 

  8. Meyer, P., Marichal, J.-L., Bisdorff, R.: Disaggregation of bipolar-valued outranking relations. In: An, L.T.H., Bouvry, P., Tao, P.D. (eds.) MCO. Communications in Computer and Information Science, vol. 14, pp. 204–213. Springer, Heidelberg (2008)

    Google Scholar 

  9. Bisdorff, R.: Logical foundation of multicriteria preference aggregation. In: Bouyssou, D., et al. (eds.) Aiding Decisions with Multiple Criteria, pp. 379–403. Kluwer Academic Publishers, Dordrecht (2002)

    Chapter  Google Scholar 

  10. Bisdorff, R., Meyer, P., Roubens, M.: Rubis: a bipolar-valued outranking method for the best choice decision problem. 4OR: A Quarterly Journal of Operations Research 6(2), 143–165 (2008)

    Article  MathSciNet  Google Scholar 

  11. Barbut, M.: Médianes, Condorcet et Kendall. Mathématiques et Sciences Humaines 69, 9–13 (1980)

    MATH  Google Scholar 

  12. Bisdorff, R.: Concordant outranking with multiple criteria of ordinal significance. 4OR 2(4), 293–308 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bisdorff, R., Meyer, P., Veneziano, T. (2009). Inverse Analysis from a Condorcet Robustness Denotation of Valued Outranking Relations. In: Rossi, F., Tsoukias, A. (eds) Algorithmic Decision Theory. ADT 2009. Lecture Notes in Computer Science(), vol 5783. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04428-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04428-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04427-4

  • Online ISBN: 978-3-642-04428-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics