Skip to main content

Building Consistent Pairwise Comparison Matrices over Abelian Linearly Ordered Groups

  • Conference paper
Algorithmic Decision Theory (ADT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5783))

Included in the following conference series:

Abstract

In the paper, algorithms are provided to check the consistency of pairwise comparison matrices and to build consistent matrices over abelian linearly ordered groups. A measure of consistency is also given; this measure improves a consistent index provided in a previous paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barzilai, J.: Consistency measures for pairwise comparison matrices. J. MultiCrit. Decis. Anal. 7, 123–132 (1998)

    Article  Google Scholar 

  2. Basile, L., D’Apuzzo, L.: Ranking and weak consistency in the a.h.p. context. Rivista di matematica per le scienze economiche e sociali 20(1), 99–110 (1997)

    Article  Google Scholar 

  3. Basile, L., D’Apuzzo, L.: Weak consistency and quasi-linear means imply the actual ranking. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10(3), 227–239 (2002)

    Article  MathSciNet  Google Scholar 

  4. Basile, L., D’Apuzzo, L.: Transitive matrices, strict preference and intensity operators. Mathematical Methods in Economics and Finance 1, 21–36 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Basile, L., D’Apuzzo, L.: Transitive matrices, strict preference and ordinal evaluation operators. Soft Computing 10(10), 933–940 (2006)

    Article  Google Scholar 

  6. Cavallo, B., D’Apuzzo, L.: A general unified framework for pairwise comparison matrices in multicriterial methods. International Journal of Intelligent Systems 24(4), 377–398 (2009)

    Article  Google Scholar 

  7. Chiclana, F., Herera-Viedma, E., Alonso, S., Herera, F.: Cardinal Consistency of Reciprocal Preference Relations: A Characterization of Multiplicative Transitivity. IEEE Transaction on Fuzzy Systems 17(1), 14–23 (2009)

    Article  Google Scholar 

  8. D’Apuzzo, L., Marcarelli, G., Squillante, M.: Generalized consistency and intensity vectors for comparison matrices. International Journal of Intelligent Systems 22(12), 1287–1300 (2007)

    Article  Google Scholar 

  9. Fodor, J., Yager, R., Rybalov, A.: Structure of uninorms. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 5(4), 411–427 (1997)

    Article  MathSciNet  Google Scholar 

  10. Herrera-Viedma, E., Herrera, F., Chiclana, F., Luque, M.: Some issue on consistency of fuzzy preferences relations. European Journal of Operational Research 154, 98–109 (2004)

    Article  MathSciNet  Google Scholar 

  11. Saaty, T.L.: A scaling method for priorities in hierarchical structures. J. Math. Psychology 15, 234–281 (1977)

    Article  MathSciNet  Google Scholar 

  12. Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)

    MATH  Google Scholar 

  13. Saaty, T.L.: Axiomatic foundation of the analytic hierarchy process. Management Science 32(7), 841–855 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cavallo, B., D’Apuzzo, L., Squillante, M. (2009). Building Consistent Pairwise Comparison Matrices over Abelian Linearly Ordered Groups. In: Rossi, F., Tsoukias, A. (eds) Algorithmic Decision Theory. ADT 2009. Lecture Notes in Computer Science(), vol 5783. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04428-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04428-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04427-4

  • Online ISBN: 978-3-642-04428-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics