Skip to main content

The First Belief Dominance: A New Approach in Evidence Theory for Comparing Basic Belief Assignments

  • Conference paper
Algorithmic Decision Theory (ADT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5783))

Included in the following conference series:

Abstract

In this paper, we consider problems where the data is uncertain and/or imprecise and given by basic belief assignments (BBA’s). In order to compare the different pairs of the BBA’s, a new concept called the first belief dominance is proposed. This is naturally inspired by the concept of first stochastic dominance that allows comparing probability distributions. Finally, an application in multicriteria decision aid context is presented to illustrate the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aregui, A., Denoeux, T.: Fusion of one-class classifiers in the belief function framework. In: Proceedings of the 10th International Conference on Information Fusion, Quebec, Canada (2007)

    Google Scholar 

  2. Aregui, A., Denoeux, T.: Novelty detection in the belief functions framework. In: Proceedings of IPMU 2006, Paris (2006)

    Google Scholar 

  3. Bawa, V.S.: Stochastic dominance: A research bibliography. Management Science 28, 698–712 (1982)

    Article  MathSciNet  Google Scholar 

  4. Ben Amor, S., Jabeur, K., Martel, J.M.: Multiple criteria aggregation procedure for mixed evaluations. European Journal of Operational Research 181, 1506–1515 (2007)

    Article  Google Scholar 

  5. Dempster, A.P.: Upper and lower probabilities induced by a multi-valued mapping. Annual Mathematics and Statistics 38, 325–339 (1967)

    Article  Google Scholar 

  6. Denoeux, T.: Extending stochastic ordering to belief functions on the real line. Information Sciences 179, 1362–1376 (2009)

    Article  MathSciNet  Google Scholar 

  7. Hadar, J., Russell, W.R.: Rules for Ordering Uncertain Prospects. The American Economic Review 59, 25–34 (1969)

    Google Scholar 

  8. Hanoch, G., Levy, H.: The efficiency analysis of choices involving risk. Review of Economic Studies 36, 335–346 (1969)

    Article  Google Scholar 

  9. Jabeur, K., Martel, J.M.: A collective choice method based on individual preferences relational systems (p.r.s.). European Journal of Operational Research 177, 469–485 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Jabeur, K., Martel, J.M.: An ordinal sorting method for group decision-making. European Journal of Operational Research 177, 1549–1565 (2007)

    Article  MathSciNet  Google Scholar 

  11. Jabeur, K., Martel, J.M.: Détermination d’un (ou plusieurs) systèmes(s) relationnel(s) de préférence (s.r.p) collectif(s) à partir des s.r.p individuels. Document de travail # 011-2002, Faculté des Sciences de l’Administration (FSA), Université Laval (2002)

    Google Scholar 

  12. Langewish, A., Choobineh, F.: Stochastic dominance tests for ranking alternatives under ambiguity. European Journal of Operational Research 95, 139–154 (1996)

    Article  Google Scholar 

  13. Lehmann, E.: Ordered families of distributions. Annals of Mathematical Statistics 26, 399–419 (1955)

    Article  MathSciNet  Google Scholar 

  14. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics 18, 50–60 (1947)

    Article  MathSciNet  Google Scholar 

  15. Martel, J.M., Zaras, K.: Stochastic dominance in multicriterion analysis under risk. Theory and Decision 39, 31–49 (1995)

    Article  Google Scholar 

  16. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  17. Smets, P., Kennes, R.: The transferable belief model. Artificial Intelligence 66, 191–234 (1994)

    Article  MathSciNet  Google Scholar 

  18. Smets, P.: Decision Making in the TBM: the Necessity of the Pignistic Transformation. International Journal of Approximate Reasoning 38, 133–147 (2005)

    Article  MathSciNet  Google Scholar 

  19. Vincke, P.: L’Aide Multicritère à la Décision. Editions de l’Université de Bruxelles, Editions Ellipses, Bruxelles (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boujelben, M.A., De Smet, Y., Frikha, A., Chabchoub, H. (2009). The First Belief Dominance: A New Approach in Evidence Theory for Comparing Basic Belief Assignments. In: Rossi, F., Tsoukias, A. (eds) Algorithmic Decision Theory. ADT 2009. Lecture Notes in Computer Science(), vol 5783. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04428-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04428-1_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04427-4

  • Online ISBN: 978-3-642-04428-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics