Abstract
In this paper, we consider problems where the data is uncertain and/or imprecise and given by basic belief assignments (BBA’s). In order to compare the different pairs of the BBA’s, a new concept called the first belief dominance is proposed. This is naturally inspired by the concept of first stochastic dominance that allows comparing probability distributions. Finally, an application in multicriteria decision aid context is presented to illustrate the proposed technique.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aregui, A., Denoeux, T.: Fusion of one-class classifiers in the belief function framework. In: Proceedings of the 10th International Conference on Information Fusion, Quebec, Canada (2007)
Aregui, A., Denoeux, T.: Novelty detection in the belief functions framework. In: Proceedings of IPMU 2006, Paris (2006)
Bawa, V.S.: Stochastic dominance: A research bibliography. Management Science 28, 698–712 (1982)
Ben Amor, S., Jabeur, K., Martel, J.M.: Multiple criteria aggregation procedure for mixed evaluations. European Journal of Operational Research 181, 1506–1515 (2007)
Dempster, A.P.: Upper and lower probabilities induced by a multi-valued mapping. Annual Mathematics and Statistics 38, 325–339 (1967)
Denoeux, T.: Extending stochastic ordering to belief functions on the real line. Information Sciences 179, 1362–1376 (2009)
Hadar, J., Russell, W.R.: Rules for Ordering Uncertain Prospects. The American Economic Review 59, 25–34 (1969)
Hanoch, G., Levy, H.: The efficiency analysis of choices involving risk. Review of Economic Studies 36, 335–346 (1969)
Jabeur, K., Martel, J.M.: A collective choice method based on individual preferences relational systems (p.r.s.). European Journal of Operational Research 177, 469–485 (2005)
Jabeur, K., Martel, J.M.: An ordinal sorting method for group decision-making. European Journal of Operational Research 177, 1549–1565 (2007)
Jabeur, K., Martel, J.M.: Détermination d’un (ou plusieurs) systèmes(s) relationnel(s) de préférence (s.r.p) collectif(s) à partir des s.r.p individuels. Document de travail # 011-2002, Faculté des Sciences de l’Administration (FSA), Université Laval (2002)
Langewish, A., Choobineh, F.: Stochastic dominance tests for ranking alternatives under ambiguity. European Journal of Operational Research 95, 139–154 (1996)
Lehmann, E.: Ordered families of distributions. Annals of Mathematical Statistics 26, 399–419 (1955)
Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics 18, 50–60 (1947)
Martel, J.M., Zaras, K.: Stochastic dominance in multicriterion analysis under risk. Theory and Decision 39, 31–49 (1995)
Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)
Smets, P., Kennes, R.: The transferable belief model. Artificial Intelligence 66, 191–234 (1994)
Smets, P.: Decision Making in the TBM: the Necessity of the Pignistic Transformation. International Journal of Approximate Reasoning 38, 133–147 (2005)
Vincke, P.: L’Aide Multicritère à la Décision. Editions de l’Université de Bruxelles, Editions Ellipses, Bruxelles (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Boujelben, M.A., De Smet, Y., Frikha, A., Chabchoub, H. (2009). The First Belief Dominance: A New Approach in Evidence Theory for Comparing Basic Belief Assignments. In: Rossi, F., Tsoukias, A. (eds) Algorithmic Decision Theory. ADT 2009. Lecture Notes in Computer Science(), vol 5783. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04428-1_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-04428-1_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04427-4
Online ISBN: 978-3-642-04428-1
eBook Packages: Computer ScienceComputer Science (R0)