Abstract
A natural interpretation of GUHA style data mining logic in paraconsistent fuzzy logic framework is introduced. Significance of this interpretation is discussed.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Imielinski, T., Swami, A.N.: Mining Association Rules between Sets of Items in Large Databases. SIGMOD 22(2), 207–216 (1993)
Belnap, N.D.: A useful four–valued logic. In: Epstein, G., Dumme, J. (eds.) Modern uses of multiple valued logics, pp. 8–37. D. Reidel, Dordrecht (1977)
Hájek, P., Havel, I., Chytil, M.: The GUHA method of Automatic Hypotheses Determination. Computing 1, 293–308 (1966)
Hájek, P., Havránek, T.: Mechanizing Hypothesis Formation. Mathematical Foundations for a General Theory, p. 396. Springer, Berlin (1978)
Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)
Holeňa, M.: Fuzzy Hypotheses for GUHA Implications. Fuzzy Sets and Systems 98, 101–125 (1998)
Holeňa, M.: Fuzzy Hypotheses Testing in the Framework of Fuzzy Logic. Fuzzy Sets and Systems 145, 229–252 (2004)
Novák, V., Perfilieva, I., Dvořák, A., Chen, G., Wei, Q., Peng, Y.: Mining Pure Linguistic Associations from Numerical Data. Int. Journal of Approximate Reasoning (2007) (to appear)
Novák, V.: Fuzzy Logic Theory of Evaluating Expressions and Comparative Quantifiers. In: Proc. 11.th Int. Conf. IPMU, Éditions EDK, Les Cordeliers, Paris, July 2006, vol. 2, pp. 1572–1579 (2006)
Öztürk, M., Tsoukias, A.: Modeling uncertain positive and negative reasons in decision aiding. Decision Support Systems 43, 1512–1526 (2007)
Pavelka, J.: On fuzzy logic I, II, III. Zeitsch. f. Math. Logik 25, 45–52, 119–134, 447–464 (1979)
Perny, P., Tsoukias, A.: On the continuous extensions of four valued logic for preference modeling. In: Proceedings of the IPMU conference, pp. 302–309 (1998)
Rauch, J., Simunek, M.: Mining 4ft–rules. In: Arikawa, S., Morishita, S. (eds.) Discovery Science, pp. 268–272. Springer, Berlin (2000)
Tsoukias, A.: A first order, four valued, weakly paraconsistent logic and its relation to rough sets semantics. Foundations of Computing and Decision Sciences 12, 85–108 (2002)
Turunen, E.: Mathematics behind Fuzzy Logic. Springer, Heidelberg (1999)
Turunen, E.: A Para Consistent Fuzzy Logic. In: Ramanujam, R., Sarukkai, S. (eds.) Logic and Its Applications. LNCS (LNAI), vol. 5378, pp. 77–88. Springer, Heidelberg (2009)
Ylirinne, E., Turunen, E.: Interpreting Data Mining Quantifiers in Mathematical Fuzzy logic. In: Symposium on Fuzzy Systems in Computer Science, FSCS 2006, Magdeburg, Germany, September 27-28, pp. 33–41 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Turunen, E. (2009). Interpreting GUHA Data Mining Logic in Paraconsistent Fuzzy Logic Framework. In: Rossi, F., Tsoukias, A. (eds) Algorithmic Decision Theory. ADT 2009. Lecture Notes in Computer Science(), vol 5783. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04428-1_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-04428-1_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04427-4
Online ISBN: 978-3-642-04428-1
eBook Packages: Computer ScienceComputer Science (R0)