Abstract
Most work in game theory is conducted under the assumption that the players are expected utility maximizers. Expected utility is a very tractable decision model, but is prone to well-known paradoxes and empirical violations (Allais 1953, Ellsberg 1961), which may induce systematic biases in game-theoretic predictions. La Mura (2009) introduced a projective generalization of expected utility (PEU) which avoids the dominant paradoxes, while remaining quite tractable. We show that every finite game with PEU players has an equilibrium, and discuss several examples of PEU games.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allais, M.: Le Comportement de l’Homme Rationnel devant le Risque: Critique des postulats et axiomes de l’École Americaine. Econometrica 21, 503–546 (1953)
Anscombe, F.J., Aumann, R.J.: A Definition of Subjective Probability. The Annals of Mathematical Statistics 34, 199–205 (1963)
Bernoulli, D.: Specimen theoriae novae de mensura sortis. Commentarii Academiae Scientiarum Imperialis Petropolitanae 5, 175–192 (1738); Translated as Exposition of a new theory of the measurement of risk. Econometrica 22, 123–136 (1954)
Chew, S.H., Epstein, L.G., Segal, U.: Mixture symmetry and quadratic utility. Econometrica 59, 139–164 (1991)
Deutsch, D.: Quantum Theory of Probability and Decisions. Proceedings of the Royal Society A455, 3129–3197 (1999)
Ellsberg, D.: Risk, Ambiguity and the Savage Axioms. Quarterly Journal of Economics 75, 643–669 (1961)
La Mura, P.: Projective expected utility. Journal of Mathematical Psychology (2009)
Machina, M.J.: Expected utility analysis without the independence axiom. Econometrica 50, 277–323 (1982)
von Neumann, J.: Mathematische Grundlagen der Quantenmechanic. Springer, Berlin (1932); Translated as Mathematical foundations of quantum mechanics. Princeton University Press, Princeton (1955)
von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)
Rabin, M., Thaler, R.H.: Anomalies: Risk Aversion. Journal of Economic Perspectives 15, 219–232 (2001)
Savage, L.J.: The Foundations of Statistics. Wiley, New York (1954)
Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57, 571–587 (1989)
Tversky, A.: A critique of expected utility theory: Descriptive and normative considerations. Erkenntnis 9, 163–173 (1975)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
La Mura, P. (2009). Game Theory without Decision-Theoretic Paradoxes. In: Rossi, F., Tsoukias, A. (eds) Algorithmic Decision Theory. ADT 2009. Lecture Notes in Computer Science(), vol 5783. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04428-1_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-04428-1_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04427-4
Online ISBN: 978-3-642-04428-1
eBook Packages: Computer ScienceComputer Science (R0)