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Abstract

Most work in game theory is conducted un-
der the assumption that the players are expected
utility maximizers. Expected utility is a very
tractable decision model, but is prone to well-
known paradoxes and empirical violations (Al-
lais 1953, Ellsberg 1961), which may induce
biases in game-theoretic predictions. La Mura
(2009) introduced a projective generalization of
expected utility (PEU) which avoids the domi-
nant paradoxes, while remaining quite tractable.
We show that every finite game with PEU players
has an equilibrium, and discuss several examples
of PEU games.
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1 Introduction

The expected utility hypothesis is the de facto foundation
of game theory.

The von Neumann - Morgenstern axiomatization of ex-
pected utility, and later on the subjective formulations by
Savage (1954) and Anscombe and Aumann (1963) were
immediately greeted as simple and intuitively compelling.
Yet, in the course of time, a number of empirical viola-
tions and paradoxes (Allais 1953, Ellsberg 1961) came to
cast doubt on the validity of the hypothesis as a founda-
tion for the theory of rational decisions in conditions of
risk and subjective uncertainty. In economics and in the
social sciences, the shortcomings of the expected utility
hypothesis are generally well-known, but often tacitly ac-
cepted in view of the great tractability and usefulness of the
corresponding mathematical framework. In fact, the hy-
pothesis postulates that preferences can be represented by
way of a utility functional which is linear in probabilities,
and linearity makes expected utility representations partic-
ularly tractable in models and applications. In particular, in

a game-theoretic context, linearity of expected utility en-
sures that the best response correspondence is also linear,
and hence that any finite game has a Nash equilibrium.

In economics and the social sciences, the importance of ac-
counting for violations of the expected utility hypothesis
has long been recognized (Tversky 1975), but so far none of
its numerous alternatives (e.g., Machina 1982, Schmeidler
1989, to quote only two particularly influential papers in a
rich and constantly evolving literature) has fully succeeded
in replacing expected utility as a standard foundation for
decisions under uncertainty, partly due to the great mathe-
matical tractability of expected utility relative to many of
its proposed generalizations.

La Mura (2009) introduced projective expected utility
(PEU), a decision-theoretic framework which accommo-
dates the dominant paradoxes while retaining significant
simplicity and tractability. This is obtained by weakening
the expected utility hypothesis to its projective counterpart,
in analogy with the quantum-mechanical generalization of
classical probability theory.

We first review the EU and PEU frameworks, and show that
the latter is sufficiently general to avoid both Allais’ and
Ellsberg’s paradoxes. We then extend the notion of Nash
equilibrium to games with PEU preferences, and prove that
any finite game with PEU players has an equilibrium. Fi-
nally, we discuss several examples of games with PEU
preferences and identify observable deviations from the
theory of games with EU preferences.

2 von Neumann - Morgenstern Expected
Utility

Let Q be a finite set of outcomes, and A be the set of
probability functions defined on €2, taken to represent risky
prospects (or lotteries). Next, let - be a complete and
transitive binary relation defined on A x A, representing
a decision-maker’s preference ordering over lotteries. In-
difference of p,q € A is defined as [p 2~ ¢ and ¢ 7 p]
and denoted as p ~ ¢, while strict preference of p over q is



defined as [p 7Z ¢ and not ¢ 77 p], and denoted by p > q.
The preference ordering is assumed to satisfy the following
two conditions.

Axiom 1 (Archimedean) For all p,q,r € A withp = q >
r, there exist o, 3 € (0, 1) such that ap + (1 — a@)r = ¢ >
Bp+ (1= pB)r.

Axiom 2 (Independence) For all p,q,r € A, p = q if, and
onlyif,ap+ (1 —a)r = ag+ (1 — a)r forall « € [0,1].

A functional u : A — R is said to represent = if, for all
p,q € A, p 7 qif and only if u(p) > u(q).

Theorem 1 (von Neumann and Morgenstern) Axioms 1
and 2 are jointly equivalent to the existence of a functional
u : A — R which represents 7~ such that, for all p € A,

u(p) =) u(w)p(w).

we

The von Neumann - Morgenstern setting is appropriate
whenever the nature of the uncertainty is purely objec-
tive: all lotteries are associated with objective random de-
vices, such as dice or roulette wheels, with well-defined
and known frequencies for all outcomes, and the decision-
maker only evaluates a lottery based on the frequencies of
its outcomes.

3 Allais’ Paradox

The following paradox is due to Allais (1953). First, please
choose between

A: A chance of winning 4000 dollars with probability 0.2
B: A chance of winning 3000 dollars with probability 0.25.

Now suppose that, instead of A and B, your two alternatives
are

C: A chance of winning 4000 dollars with probability 0.8

D: A chance of winning 3000 dollars with certainty.

If you chose A over B, and D over C, then you are in
the modal class of respondents. The paradox lies in the
observation that A and C' are special cases of a two-stage
lottery E which in the first stage either returns zero dollars
with probably (1 — «) or, with probability «, leads to a
second stage where one gets 4000 dollars with probability
0.8 and zero otherwise. In particular, if « is set to 1 then
E reduces to C, and if « is set to 0.25 it reduces to A.
Similarly, B and D are special cases of a two-stage lottery

F which again with probability (1 — «) returns zero, and
with probability o continues to a second stage where one
wins 3000 dollars with probability 1. Again, if @ = 1 then
F reduces to D, and if a = 0.25 it reduces to B. Then it
is easy to see that the [A = B, D > (] pattern violates
Axiom 2 (Independence), as F can be regarded as a lottery
ap+(1—a)r, and F as alottery ag+ (1—a)r, where p and
q represent lottery C' and D, respectively, and r represents
the lottery in which one gets zero dollars with certainty.
When comparing E and F, why should it matter what is
the value of a? Yet, experimentally one finds that it does.

4 Elisberg’s Paradox

Another disturbing violation of the expected utility hypoth-
esis was pointed out by Ellsberg (1961). Suppose that an
urn contains 300 balls of three possible colors: red, green,
and blue. You know that the urn contains exactly 100 red
balls, but are given no information on the proportion of
green and blue.

You win if you guess which color will be drawn. Do you
prefer to bet on red (R) or on green (G)? Many respon-
dents choose R, on grounds that the probability of drawing
a red ball is known to be 1/3, while the only information
on the probability of drawing a green ball is that it is be-
tween 0 and 2/3. Now suppose that you win if you guess
which color will not be drawn. Do you prefer to bet that red
will not be drawn (R) or that green will not be drawn (G)?
Again many respondents prefer to bet on R, as the prob-
ability is known (2/3) while the probability of G is only
known to be between 1 and 1/3.

The pattern [R > G, R > Gl is incompatible with von
Neumann - Morgenstern expected utility, which only deals
with known probabilities, and is also incompatible with the
Savage (1954) formulation of expected utility with subjec-
tive probability as it violates its Sure Thing axiom. Ob-
serve that, in Ellsberg’s setting, the decision-maker ignores
the actual composition of the urn, and hence operates in a
state of subjective uncertainty about the true probabilistic
state of affairs. In particular, the decision-maker is exposed
to a combination of subjective uncertainty (on the actual
composition of the urn) and objective risk (the probability
of drawing a specific color from an urn of given composi-
tion). The paradox suggests that, in order to account for the
choice pattern discussed above, subjective uncertainty and
risk should be handled as distinct notions.

5 Projective Expected Utility

Let X be the positive orthant of the unit sphere in R",
where 7 is the cardinality of the set of relevant outcomes
Q. Then von Neumann - Morgenstern lotteries, regarded as



elements of the unit simplex, are in one-to-one correspon-
dence with elements of X, which can therefore be inter-
preted as risky prospects, for which the frequencies of the
relevant outcomes are fully known. Observe that, while the
projections of elements of the unit simplex (and hence, L*
unit vectors) on the basis vectors can be naturally associ-
ated with probabilities, if we choose to model von Neu-
mann - Morgenstern lotteries as elements of the unit sphere
(and hence, as unit vectors in L?) then probabilities are nat-
urally associated with squared projections. The advantage
of such move is that L? is the only L space which is also a
Hilbert space, and Hilbert spaces have a very tractable pro-
jective structure which is exploited by the representation.
In particular, it is unique to L? that the set of unit vectors is
invariant with respect to projections.

Next, let (.|.) denote the usual inner product in R™. We
denote the transpose of a vector or a matrix with a prime,
e.g., ' denotes the transpose of x. An orthonormal basis
is a set of unit vectors {b',...,b"} such that (b'|b") = 0
whenever ¢ # j. In our context, orthogonality captures
the idea that two events or outcomes are mutually exclu-
sive (for one event to have probability one, the other must
have probability zero). The natural basis corresponds to
the set of degenerate lotteries returning each objective lot-
tery outcome with certainty, and is conveniently identified
with the set of objective lottery outcomes {w!, w?, ..., w™}.
Yet, in any realistic experimental setting, it is very unlikely
that those objective outcomes will happen to coincide with
the set of subjective consequences which are relevant from
the perspective of the decision-maker. Moreover, even if
the latter could be fully elicited, it would be generally
problematic to relate a von Neumann - Morgenstern lot-
tery, which only specifies the probabilities of the objective
outcomes, with the probabilities induced on the subjective
consequences, that is, the relevant dimensions of risk from
the point of view of the decision-maker. The perspective
of the observer or modeler is inexorably bound to objec-
tively measurable entities, such as frequencies and prizes;
by contrast, the decision-maker thinks and acts based on
subjective preferences and subjective consequences, which
in a revealed-preference context should be presumed to ex-
ist while at the same time assumed, as a methodological
principle, to be unaccessible to direct measurement.

In this section we shall relax the assumption, implicit in the
von Neumann - Morgenstern setting, that the objective out-
comes and subjective consequences coincide, and replace it
with the weaker requirement that there exists a set of mutu-
ally exclusive, jointly exhaustive subjective consequences
with respect to which the decision-maker evaluates each
uncertain prospect. As we shall see such weaker condition,
together with the usual assumptions of completeness and
transitivity of preferences, and the Archimedean and Inde-
pendence conditions from the von Neumann-Morgenstern
treatment, jointly characterize representability in terms of a

projective generalization of the expected utility functional.

Let B := {b',...,b"} represent a set of n mutually exclu-
sive, jointly exhaustive subjective consequences, identified
with an orthonormal basis in R™. For any lottery z € X,
its associated risk profile p, with respect to B is defined by

pa(b)) = (b)) i=1,...,n

The risk profile of a lottery x returns the probabilities in-
duced on the subjective consequences by playing lottery x.
Observe that the risk profile with respect to the natural ba-
sis simply returns the probabilities of the lottery outcomes.
Hence, in the present setting a lottery is identified both in
terms of objective outcomes and subjective consequences.
Since the position of the subjective basis relative to the nat-
ural basis can be arbitrary, a lottery can exhibit any combi-
nation of risk profiles on outcomes and consequences.

Axiom 3 (Born’s Rule) There exists an orthonormal basis
Z = {2, ..., 2"} such that any two lotteries v,y € X
are indifferent whenever their risk profiles with respect to
7 coincide.

Axiom 3 requires that there exists a set of n mutually ex-
clusive, jointly exhaustive subjective consequences such
that any two lotteries are only evaluated based on their
risk profiles, i.e., on the probabilities they induce on those
subjective consequences. In the von Neumann - Morgen-
stern treatment, Axiom 3 is tacitly assumed to hold with
respect to the natural basis in R™. This implicit assumption
amounts to the requirement that lotteries are only evaluated
based on the probabilities they induce on the objective lot-
tery outcomes.

While the probabilities with respect to the natural basis rep-
resent the relevant dimensions of risk as perceived by the
modeler or an external observer (that is, the risk associ-
ated with the occurrence of the objective outcomes), the
preferred basis postulated in Axiom 3 is allowed to vary
across different decision-makers, capturing the idea that the
subjectively relevant dimensions of risk (that is, those per-
taining to the actual subjective consequences) may be per-
ceived differently by different subjects. One case in which
the relevant dimensions of risk may differ across subjects
is in the presence of portfolio effects, when the lottery out-
comes are correlated with the portfolio outcomes. Such
effects are very difficult to exclude or control for in exper-
imental settings. For instance, the very fact of proposing
to a subject the Allais or Ellsberg games described above
generates an expectation of gain: an invitation to play the
game can be effectively regarded as a risky security which
is donated to the subject, and whose subjective returns are
obviously correlated, but do not necessarily coincide, with
the monetary outcomes of the experiment. Even in such
simple contexts, significant hedging behavior cannot be in
principle ruled out.



The preferred basis captures which, among all possible
ways to partition the relevant uncertainty into a set of mutu-
ally exclusive events or outcomes, leads to a set of payoft-
relevant, mutually orthogonal lotteries from which prefer-
ences on all other lotteries can be assigned in a linear fash-
ion. In particular, the basis elements must span the whole
range of preferences. For instance, in case a decision-
maker is indifferent between two outcomes, but strictly
prefers to receive them with equal frequency, preferences
on the two outcomes do not span all the relevant range;
therefore, this preference pattern cannot be captured in the
natural basis, and hence in von Neumann - Morgenstern
expected utility.

For now, and only for simplicity, we assume that subjective
consequences and objective outcomes have the same cardi-
nality; we relax this assumption later on, in the subjective
formulation.

Once an orthonormal basis Z is given, each lottery x can
be associated with a function p,, : Z — [0, 1], such that

pe(2Y) = <x\zz>2 for all 2* € Z. Let B be the set of all
such risk profiles p,, for x € X, and let 7 be the complete
and transitive preference ordering induced on B x B by
preferences on the underlying lotteries.

Note that a convex combination ap, + (1 — «)p,, where p,
and p, are risk profiles, is still a well-defined risk profile.
We interpret this type of mixing as objective, while subjec-
tive mixing will be later on captured by subjective proba-
bility over the underlying (Anscombe-Aumann) states. We
postulate the following two axioms, which mirror those in
the von Neumann - Morgenstern treatment.

Axiom 4 (Archimedean) For all x,y,t € X with p(z) >
p(y) = p(t), there exist o, 5 € (0,1) such that ap(z) +
(1= a)p(t) = p(y) = Bp(x) + (1 = B)p(t).

Axiom 5 (Independence) For all x,y,t € X, py 7 py if;
and only if, apy + (1 — a)ps Z apy + (1 — «)p; for all
a€0,1].

Some observations are in order at this point. First, note that
the two axioms above impose conditions solely on risk pro-
files, and not on the underlying lotteries. This seems appro-
priate, as the decision-maker is not ultimately concerned
with the risk associated to the objective outcomes, but only
with the risk induced on the relevant subjective conse-
quences. It is also worth noting that, while risk profiles are
now defined with respect to subjective consequences, rather
than objective outcomes as in the von Neumann - Morgen-
stern treatment, in our setting they are still interpreted as
objective probability functions.

Theorem 2 Axioms 3-5 are jointly equivalent to the exis-
tence of a symmetric matrix U such that u(x) := 2'Ux for
all x € X represents 77,

Proof. Assume that Axiom 3 holds with respect to a given
orthonormal basis {z!,...,2"}. By the von Neumann -
Morgenstern result (which applies to any convex mixture
set, such as B) Axioms 4 and 5 are jointly equivalent to the
existence of a functional u which represents the ordering
and is linear in p, i.e.

- i i - i i\2
u(@) =Y u(z")pa(z") = Y _ulz) (a]z")",
i=1 i=1
where the second equality is by definition of p as the
squared inner product with respect to the preferred basis.
The above can be equivalently written, in matrix form, as

u(z) = 2’ P"DPz = 2'Ux,

where D is the diagonal matrix with the payoffs on the
main diagonal, P is the projection matrix defined by
(P,.) = 2%, and U := P'DP is symmetric. Conversely,
by the Spectral Decomposition theorem, for any symmetric
matrix U there exist a diagonal matrix D and a projection
matrix P such that U = P’DP, and hence

2'Ux = 2’ P’ DPx

for all z € X. But this is just expected utility with respect
to the orthonormal basis defined by P. Hence, the three ax-
ioms are jointly equivalent to the existence of a symmetric
matrix U such that u(z) := 2’Ux represents the preference
ordering. QED

6 Subjective Formulation

The following formulation extends the representation to sit-
uations of subjective uncertainty. First, we introduce the
following setup and notation.

S is a finite set of states of Nature.
(.|.) denotes the usual inner product in Euclidean space.

() is the natural basis in R", identified with a finite set
{w!,....,w"} of lottery outcomes (prizes).

Z is an orthonormal basis in R™, with m > n, identified
with a finite set of subjective consequences {z!,....,2™}.
V is an arbitrary (m X n) matrix chosen so that, for all
w' in Q, Vw' is a unit vector in R™. Observe that V is
always well defined as long as m > n. When m = n, we
conventionally set V' = I, where [ is the n X n identity
matrix.

Lotteries correspond to L? unit vectors z € R™; X is the
set of all lotteries.

Since (2 is the natural basis, (w" |x>2 = x2; this quantity is
interpreted as p(w®|z).
The quantity (27 |V:c>2 is interpreted as p(z7|z), the con-

ditional probability of subjective consequence 2z’ given lot-
tery . In particular, (27|Vw®)” is interpreted as p(z7 |w"),



the conditional probability of subjective consequence z’
given the degenerate lottery which returns objective out-
come w" for sure.

Once the subjective consequences 27 are specified, for any
lottery = one can readily compute p(wi|r) = 2? and
p(Z|r) = <zj\Vx>2. Moreover, given the latter proba-
bilistic constraints, one can readily identify a lottery x and
an orthonormal basis Z which jointly satisfy them. Hence,
in the above construction lotteries are identified with re-
spect to two different frames of reference: objective lottery
outcomes, and subjective consequences.

Observe that p(z7|z) generally differs from the probabil-
ity of 27 given 2 computed according to the law of to-
tal probability, which is given by >, p(w'|z)p(z? |w’) =
St (2 |Vwi>2. To get a sense of why and how the law
of total probability may fail, let us consider a decision-
maker who really hates to lose whenever the probability
of winning is high (more so than when the probability of
winning is low), and loves to win when the probability of
losing is high (even more so than when the latter probabil-
ity is low). Clearly, in such case the probabilities of ob-
jective outcomes such as winning and losing are directly
involved in the description of subjectively relevant conse-
quences such as “I won (or lost) against all odds”. Such
dependency introduces an element of interference between
lotteries and consequences that cannot be easily accounted
for in the classical decision-theoretic setting, which pre-
sumes state independence.

An act is identified with a function f : S — X. H is the
set of all acts.

A(X) is the (nonempty, closed and convex) set of all prob-
ability functions on Z induced by lotteries in X.

M is the set of all vectors (ps)secs, with ps € A(X).

For each f € H a corresponding risk profile pf e M
is defined, for all s € S and all 27 € Z, by pf(27) =

<zj|st>2.

As customary, we assume that the decision-maker’s pref-
erences are characterized by a rational (i.e., complete and
transitive) preference ordering =~ on acts.

Next, we proceed with the following assumptions, which
mirror those in Anscombe and Aumann (1963).

Axiom 6 (Projective) There exists a finite orthonormal ba-
sis Z :={z1, ..., zm }, with m > n, such that any two acts
f,g € H are indifferent if pf = p9.

In Anscombe and Aumann’s setting, the above axiom is im-
plicitly assumed to hold with Z = (2. Because of Axiom 6,
preferences on acts can be equivalently expressed as pref-
erences on risk profiles. For all pf,p9 € M, we stipulate
that p/ - p9 if and only if f >~ g.

Axiom 7 (Archimedean) If p’,p9,p" € M are such that
pf = p9 = ph, then there exist a,b € (0,1) such that
ap’ + (1 —a)p" = p? = bpf + (1 — b)p™.

Axiom 8 (Independence) For all p?,p9, p" € M, and for
all a € (0,1, p/ = p9 if and only if ap’ + (1 — a)p" =
ap? + (1 - a)p™.

Axiom 9 (Non-degeneracy) There exist p’,p9 € M such
that pf ~ p9.

Axiom 10 (State independence) Let s,t € S be non-null
states, and let p, q € A(X). Then, for any p¥ € M,

(p{7"'7p£—1,p7p£+1a'“ap£) >‘
(p{v "'ap£—17qap£+1a apyfz)

if, and only if,

(p{v"'7p{—1ap7p{+17"'7p£) -
(p{7 "'7ptffla qvpthrlv s 1f1)

Theorem 3 (Anscombe and Aumann) The preference rela-
tion =, fulfills Axioms 6 — 10 if and only if there is a unique
probability measure ™ on S and a non-constant function
u : Z — R (unique up to positive affine rescaling) such
that, forany f,g € H, f = g if, and only if,

ZSES m(s) Zziezpf(zi)u(zi) >

ZSES 7((8) Zz"EZ pg(zl)u(zl)

The following result provides a projective generalization of
the Anscombe and Aumann theorem.

Theorem 4 The preference relation 7 fulfills Axioms 6 —
10 if and only if there is a unique probability measure w on
S and a symmetric (n x n) matrix U with distinct eigen-
values such that, for any f,g € H, f = g if, and only

if,
2ees M) U fs 2 3 es m(5)g5U s

Proof. Let D be the (m x m) diagonal matrix defined by
D; ; = u(z"), and let P be the projection matrix defined by
(P;,)" = 2" If Axioms 6-10 hold, we know from Theorem
3 that the preference ordering has an expected utility rep-
resentation. Observe that, since (PV f5)? = (2|V f5)? =

p/(2"), the expected utility of any act f can be written as

Yees T(8) Yz PL(EVu(2') = Fes m(5) fiU fs,



where U := V'P'DPV is a (n x n) symmetric matrix.
Furthermore, observe that at least two eigenvalues of U
must be distinct, otherwise u(f) = c for all f € H, con-
tradicting Axiom 9.

Conversely, let U be a symmetric (n x n) matrix with dis-
tinct eigenvalues. By the Spectral Decomposition theorem
there exist a projection matrix P and a diagonal matrix D
such that U = P’ DP, and therefore

2ses T fUf=3 ses ™(8) [ P'DP fs.

Observe that the right-hand side is the expected utility of
f with respect to the n-dimensional orthonormal basis 7
defined by 2* = P/ , and with u(z') = D; ;. Since the
diagonal elements of D are the eigenvalues of U, if the lat-
ter has distinct eigenvalues then u(z*) is non-constant, and
hence by Theorem 3 Axioms 6-10 must hold. QED

7 Properties of the Representation

Our representation generalizes the Anscombe-Aumann ex-
pected utility framework in three directions. First, sub-
jective uncertainty and risk are treated as distinct notions.
Specifically, let us say that an act is pure or certain if it re-
turns the same objective lottery in all states, and mixed or
uncertain otherwise. While pure acts are naturally asso-
ciated with risky decisions, in which the relevant frequen-
cies are all known, mixed acts correspond to uncertain de-
cisions, in which the decision-maker only has a subjective
assessment of the true frequencies involved. Second, as
we shall see, within this class of preferences both Allais’
and Ellsberg’s paradoxes are accommodated. Finally, the
construction easily extends to the complex unit sphere, and
hence to wave functions, provided that (x|y)? is replaced
by | (z|y) |? in the definition of p, in which case Theorems 2
and 4 hold with respect to a Hermitian (rather than symmet-
ric) payoff matrix U, and the result also provides axiomatic
foundations for decisions involving quantum uncertainty.

In the context of Theorem 2, for any two distinct outcomes
w* and w’ let e; ; be the objective lottery returning each of
the two outcomes with equal frequency. Observe that

1u(wi) + 1u(uﬂ))

Uij = uleig) = (5 5

It follows that the off-diagonal entry U;; in the payoff ma-
trix can be interpreted as the discount, or premium, at-
tached to a symmetric, objective lottery over the two out-
comes with respect its expected utility base-line, and hence
as a measure of preference for risk versus uncertainty along
the specific dimension involving outcomes w® and w’. Let
us say that a decision-maker is averse to uncertainty if she

always weakly prefers e; ; to an equal subjective chance of
w' or w?. Then a decision-maker is averse to uncertainty
if and only if U is a Metzler matrix, i.e., has non-negative
off-diagonal elements.

Observe that the functional in Theorem 2 is quadratic in z,
but linear in p. If U is diagonal, then its eigenvalues coin-
cide with the diagonal elements. In von Neumann - Mor-
genstern expected utility, those eigenvalues contain all the
relevant information about the decision-maker’s risk atti-
tudes. By contrast, in our setting risk attitudes with respect
to objective outcomes are captured by both the diagonal
and non-diagonal elements of U. In turn, U is jointly char-
acterized by a projection matrix P, and a diagonal matrix D
with the eigenvalues of U on the main diagonal. While P
identifies a set of subjective consequences, D captures the
decision maker’s risk attitudes with respect to those conse-
quences.

Compared to existing generalizations of expected utility
which avoid the Allais or Ellsberg paradoxes, such as the
ones in Machina (1982), Schmeidler (1989), or Chew, Ep-
stein and Segal (1991), among others, projective expected
utility enjoys several advantages. Specifically, the repre-
sentation is linear in the probabilities of states and conse-
quences, hence remaining quite tractable, but can be non-
linear in the probabilities of the objective outcomes, hence
allowing for portfolio effects. The axioms used to ob-
tain the representation closely mirror those introduced by
Anscombe and Aumann (1963), which are widely regarded
as appealing. Moreover, as shown in sections 8 and 9, a
compatible specification of the payoff matrix avoids both
Allais’ and Ellsberg’s paradox. Finally, in case the event
space is non-classical, the result also provides foundations
for decisions involving quantum uncertainty. An early pa-
per combining ideas from quantum mechanics and deci-
sion theory is Deutsch (1999), which provides a decision-
theoretic foundation for quantum probability in the spe-
cial case of purely monetary outcomes. Our generalization
of expected utility is closest to the one in Gyntelberg and
Hansen (2004), which is obtained in a Savage context by
postulating a non-classical (that is, non-Boolean) structure
for the relevant events. By contrast, our representation is
obtained in an Anscombe-Aumann context, and does not
impose specific requirements on the nature of the relevant
uncertainty. In particular, in our setting the dominant para-
doxes can be resolved even if the relevant uncertainty is of
completely classical nature.

8 Example: Objective Uncertainty

Figure 1 below presents several examples of indifference
maps on pure lotteries which can be obtained within our
class of preferences for different choices of U.

The indifference maps refer to decision problems with
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Figure 1: Examples of indifference maps on the probability
triangle, with payoff matrices given, respectively, by

31010 3 1 0 3 1 1
0210 1 210 1 210
010 1 010 1 1 0 1
3 1 -2 3 -1 -2 3 -4 10
1 2 1 -1 2 -1 -4 2 5
21 1 20| -1 1 0 5 1

three objective outcomes, which correspond to the vertices
of the triangle. All other points in the triangle represent
probability distributions over those three alternatives, and
the iso-level curves represent loci of equal utility (indif-
ference curves). Darker shades correspond to lower util-
ity. The first pattern (parallel straight lines) characterizes
von Neumann - Morgenstern expected utility. Within our
class of representations, it corresponds to the special case
of a diagonal payoff matrix U. All other patterns are im-
possible within von Neumann - Morgenstern expected util-
ity. Observe that, even though the payoff matrix is an ob-
ject of relatively limited algebraic complexity, the indiffer-
ence curves can take a variety of different shapes: in par-
ticular, they do not need to be convex, or concave. Posi-
tive off-diagonal payoffs imply a premium for probabilistic
mixtures over the corresponding alternatives, while nega-
tive payoffs imply a discount relative to the expected utility
baseline. Clearly, since the indifference maps are gener-
ated by a limited number of parameters (the entries in the
payoff matrix), the type and variety of preference patterns
predicted by the model is also limited, and this in turn of-
fers a basis for the empirical testability of the theory.

The representation is sufficiently general to accommodate
Allais’ paradox from section 3. In the context of the exam-
ple in section 3, let {w!, w? w3} be the outcomes in which
4000, 3000, and O dollars are won, respectively. To ac-
commodate Allais’ paradox, assume that the non-diagonal
elements of the payoff matrix increase with the difference
between the corresponding diagonal payoffs. In the exam-

ple below, the non-diagonal elements are taken to be pro-
portional to the fourth power of the difference.

wl w2 w3
U= wl 1.1 0.00001 0.14641
~ w? 0.00001 1 0.1
w3 0.14641 0.1 0

The above formulation of the payoff matrix implies that,
whenever the stakes involved are similar, the correspond-
ing prospects are evaluated approximately at their (von
Neumann-Morgenstern) expected utility values. By con-
trast, whenever the stakes are significantly different, the di-
vergence from expected utility is also significant. Let the
four lotteries A, B, C, D be defined, respectively, as the
following unit vectors in Rﬁ_: a:= (\/0?,07 \/@)’; b=
(0,4/0.25,4/0.75); ¢ := (+/0.8,0,4/0.2)'; d := (0,1,0)".

Then lottery A is preferred to B, while D is preferred to C,

a) =a'Ua = 0.33713,
— Y'Ub = 0.3366,
= Uc=0.99713,

9 Example: Subjective Uncertainty

In the Ellsberg puzzle, suppose that either all the non-red
balls are green (i.e., 100 red, 200 green, O blue), or they are
all blue (100 red, 0 green, 200 blue), with equal subjective
probability. Further, suppose that there are just two objec-
tive outcomes, Win and Lose. Then the following specifi-
cation of the payoff matrix accommodates the paradox.

Win Lose
U= Win 1 «
Lose le} 0

As we shall see, if & = 0 we are in the expected utility case,
where the decision-maker is indifferent between risk and
uncertainty; when o > 0, risk is preferred to uncertainty;
and when a < 0, the decision-maker prefers uncertainty to
risk.

In fact, let {Urnl, Urn2} be the set of possible states of
nature, with uniform subjective probability, and let

ri= (VIT3, V23,
(/23 \/173)

be the lotteries associated to pure acts R and R, respec-
tively. Furthermore, let

T



w:= (1,0),
1:=(0,1)

be the lotteries corresponding to a sure win (/) and a sure
loss (L), respectively.

The mixed acts G and G have projective expected utilities
given by
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and therefore

u(G) =1/3 + av/2/3
uw(G) = 2/3+ av2/3.

It follows that, whenever a@ > 0, R is preferred to G and
R to G, so the paradox is accommodated. When o < 0,
the opposite pattern emerges: G is preferred to R and G to
R. Finally, when o« = 0 the decision-maker is indifferent
between R and GG, and between R and G.

10 Games with PEU preferences

Within the class of preferences characterized by Theorem
4, is it still true that every finite game has a Nash equi-
librium? If the payoff matrix U is diagonal we are in the
classical case, so we know that any finite game has an equi-
librium, which moreover only involves objective risk (in
our terms, this type of equilibrium should be referred to as
“pure”, as it involves no subjective uncertainty). For the
general case, consider that u( f) is still continuous and lin-
ear with respect to the subjective beliefs 7, while possibly
nonlinear (but still polynomial) with respect to risk. As we
shall see, any finite game has an equilibrium even within
this larger class of preferences, although the equilibrium
may not be pure (in our sense): in general, an equilibrium
will rest on a combination of objective randomization and
subjective uncertainty about the players’ decisions.

A finite, strategic-form game with PEU preferences is a n-
tuple G = (I, (A%Yier, (U)icr), where I is a finite set

composed of k players, A’ represents the set of feasible
actions for player i, and U’ is player 4’s payoff matrix on
outcomes. An outcome is a complete assignment of actions
(al, ..., ak ), identified with the natural basis in R, where
d := [1, |A’|. Anact of player i is a function f* from states
S? to lotteries on A’. Let H’ be the set of feasible acts for
player i. We assume that 7’ is a compact set which is
also convex with respect to both objective and subjective
mixing, in the following sense.

Assumption (Convexity): For all fi, g* € H?’, and for all
a € [0, 1], there exist h,[* € H' such that

@) pi}i = ap! (1- a)pgi for all s (objective mixture)
(i) u(l") = au(f") + (1 — a)u(g®) (subjective mixture).

A profile of acts is a unitary vector f := (f!,..., f¥), and
the utility of a profile f for player i is u’(f) = E.[f'U*f].
An equilibrium is a profile f* such that u'(f;, f*;) >
u(fi, f7,) for all f.
Theorem: Any finite, strategic-form game with PEU pref-
erences has an equilibrium.

[wi(f' f7%) >

Proof: First, let b'(f~%) = {f?

ul(gh, f7H](Vg' € H)}. Next, let H := x;H¢, and let
b : H — H be the best response correspondence, defined
by b(f) = x;b'(f?). Observe that b is a correspondence
from a nonempty, convex, and compact set H to itself. In
addition, b is a nonempty- and convex-valued, upper hemi-
continuous correspondence. It follows that the conditions
of Kakutani’s fixed point theorem are satisfied, and hence
the best response correspondence b has a fixed point: a
profile of acts f* such that f* € b(f*). The acts at this
fixed point constitute an equilibrium since by construction
¥ € bi(f**) for all i.QED

11 Games with PEU preferences: Examples

Consider the following game:

Pl1,Pl2 a2 b2
al 1.1,0 1,1.1
bt 0,1.1 1.1,1

If the agents maximize VN-M expected utility, the unique
mixed strategy equilibrium takes the following form:

(p.q) = (1/12,1/12) ~ (0.08333,0.08333)

where p and q are the probabilities of playing a' and a?, re-
spectively. We shall call this equilibrium EU equilibrium.
If the players have the preferences we introduced to explain
Allais paradox, what are the consequences on the equilib-
rium strategies of the players? In particular, does the equi-
librium differ in the case of Allais agents?

Consider the following game:



Pl1,Pl2  a? b2

al whw? W w!

bt wiw! Wl w?

where the payoff matrix of both players is given by U in
the Allais example. Observe that the payoff matrix U de-
scribes a decision-maker who is strictly uncertainty averse,
and hence if all players have payoffs matrices given by U
any equilibrium only involves pure acts. In this case, the
unique equilibrium is given by

(p,q) = (0.17632,0.17632).

Compared to the case of EU preferences, in the game with
PEU preferences a'! and a? are played more often. Start-
ing from the EU equilibrium, observe that strategy a? be-
comes more attractive for P2. To re-establish equilibrium
a' must be played more often, but then to keep P1 indiffer-
ent between her two strategies a must also be played more
often.

Next, consider the following very simple version of the
Centipede game: P1 either quits (outcome; w?,w?) or
passes, in which case P2 either quits (outcome; w?,w?),
or passes (outcome; w',w?). The payoff matrices of the
two players are still given by U.

Let p denote the probability that P1 passes, and let g be the
probability that P2 passes given that P1 passed. Then the
PEU for P1 and P2 are given, respectively, by

(1-p)(1=9),p,1=p))U((1=p)(1 —q),p,(1 —p)g)
(1=p)g,(1—=p)(1—q),p)U((1-p)g, 1 —p)(1 —q),p)"

In a subgame-perfect equilibrium, player 2 chooses g so

that it maximizes (,/g, /(1 —¢),0)U(y/q,+/(1 — q),0)’,
and hence will choose ¢ = 1. Given that
= 1, Pl will choose p to maximize

q =

(0,yp,/(1=p)U(0,\/p,\/(1 —p))’, and hence in
equilibrium p = 0.99029. It follows that the unique
subgame-perfect equilibrium in this game involves a small
probability of continuation. Clearly, in a longer version
of the centipede these continuation probability would be
amplified.
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