Skip to main content

Game Theory without Decision-Theoretic Paradoxes

  • Conference paper
Algorithmic Decision Theory (ADT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5783))

Included in the following conference series:

  • 1085 Accesses

Abstract

Most work in game theory is conducted under the assumption that the players are expected utility maximizers. Expected utility is a very tractable decision model, but is prone to well-known paradoxes and empirical violations (Allais 1953, Ellsberg 1961), which may induce systematic biases in game-theoretic predictions. La Mura (2009) introduced a projective generalization of expected utility (PEU) which avoids the dominant paradoxes, while remaining quite tractable. We show that every finite game with PEU players has an equilibrium, and discuss several examples of PEU games.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allais, M.: Le Comportement de l’Homme Rationnel devant le Risque: Critique des postulats et axiomes de l’École Americaine. Econometrica 21, 503–546 (1953)

    Article  MathSciNet  Google Scholar 

  • Anscombe, F.J., Aumann, R.J.: A Definition of Subjective Probability. The Annals of Mathematical Statistics 34, 199–205 (1963)

    Article  MathSciNet  Google Scholar 

  • Bernoulli, D.: Specimen theoriae novae de mensura sortis. Commentarii Academiae Scientiarum Imperialis Petropolitanae 5, 175–192 (1738); Translated as Exposition of a new theory of the measurement of risk. Econometrica 22, 123–136 (1954)

    Article  Google Scholar 

  • Chew, S.H., Epstein, L.G., Segal, U.: Mixture symmetry and quadratic utility. Econometrica 59, 139–164 (1991)

    Article  MathSciNet  Google Scholar 

  • Deutsch, D.: Quantum Theory of Probability and Decisions. Proceedings of the Royal Society A455, 3129–3197 (1999)

    Article  MathSciNet  Google Scholar 

  • Ellsberg, D.: Risk, Ambiguity and the Savage Axioms. Quarterly Journal of Economics 75, 643–669 (1961)

    Article  MathSciNet  Google Scholar 

  • La Mura, P.: Projective expected utility. Journal of Mathematical Psychology (2009)

    Google Scholar 

  • Machina, M.J.: Expected utility analysis without the independence axiom. Econometrica 50, 277–323 (1982)

    Article  MathSciNet  Google Scholar 

  • von Neumann, J.: Mathematische Grundlagen der Quantenmechanic. Springer, Berlin (1932); Translated as Mathematical foundations of quantum mechanics. Princeton University Press, Princeton (1955)

    Google Scholar 

  • von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)

    MATH  Google Scholar 

  • Rabin, M., Thaler, R.H.: Anomalies: Risk Aversion. Journal of Economic Perspectives 15, 219–232 (2001)

    Article  Google Scholar 

  • Savage, L.J.: The Foundations of Statistics. Wiley, New York (1954)

    MATH  Google Scholar 

  • Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57, 571–587 (1989)

    Article  MathSciNet  Google Scholar 

  • Tversky, A.: A critique of expected utility theory: Descriptive and normative considerations. Erkenntnis 9, 163–173 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

La Mura, P. (2009). Game Theory without Decision-Theoretic Paradoxes. In: Rossi, F., Tsoukias, A. (eds) Algorithmic Decision Theory. ADT 2009. Lecture Notes in Computer Science(), vol 5783. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04428-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04428-1_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04427-4

  • Online ISBN: 978-3-642-04428-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics