Abstract
Multi-stage decision optimization under uncertainty depends on a careful numerical approximation of the underlying stochastic process, which describes the future uncertain values on which the decision will depend on. The quality of the scenario model severely affects the quality of the solution of the optimization model. Various approaches towards an optimal generation of discrete-state approximations (represented as scenario trees) have been suggested in the literature. Direct scenario tree sampling based on historical data or econometric models, as well as scenario path simulation and optimal tree approximation methods are discussed from an algorithmic perspective. A multi-stage financial asset management decision optimization model is presented to outline strategies to analyze the impact of various algorithmic scenario generation methodologies.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Eichhorn, A., Römisch, W.: Polyhedral risk measures in stochastic programming. SIAM Journal on Optimization 16(1), 69–95 (2005)
Ruszczyński, A., Shapiro, A. (eds.): Stochastic programming. Handbooks in Operations Research and Management Science, vol. 10. Elsevier Science B.V., Amsterdam (2003)
Wallace, S.W., Ziemba, W.T. (eds.): Applications of stochastic programming. MPS/SIAM Series on Optimization, vol. 5. Society for Industrial and Applied Mathematics, SIAM (2005)
Dupačová, J., Consigli, G., Wallace, S.W.: Scenarios for multistage stochastic programs. Annals of Operations Research 100, 25–53 (2000)
Pennanen, T.: Epi-convergent discretizations of multistage stochastic programs. Mathematics of Operations Research 30(1), 245–256 (2005)
Kuhn, D.: Aggregation and discretization in multistage stochastic programming. Mathematical Programming 113(1, Ser. A), 61–94 (2008)
Hilli, P., Pennanen, T.: Numerical study of discretizations of multistage stochastic programs. Kybernetika 44(2), 185–204 (2008)
Kaut, M., Wallace, S.W.: Evaluation of scenario generation methods for stochastic programming. Pacific Journal of Optimization 3(2), 257–271 (2007)
Markowitz, H.M.: Portfolio selection. The Journal of Finance 7(1), 77–91 (1952)
Hochreiter, R.: Evolutionary stochastic portfolio optimization. In: Brabazon, A., ONeill, M. (eds.) Natural Computing in Computational Finance. Studies in Computational Intelligence, vol. 100, pp. 67–87. Springer, Heidelberg (2008)
Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Mathematical Finance 9(3), 203–228 (1999)
Steinbach, M.C.: Markowitz revisited: mean-variance models in financial portfolio analysis. SIAM Review 43(1), 31–85 (2001)
Rockafellar, R., Uryasev, S.: Optimization of Conditional Value-at-Risk. The Journal of Risk 2(3), 21–41 (2000)
Casey, M.S., Sen, S.: The scenario generation algorithm for multistage stochastic linear programming. Mathematics of Operations Research 30(3), 615–631 (2005)
Høyland, K., Wallace, S.W.: Generating scenario trees for multistage decision problems. Management Science 47(2), 295–307 (2001)
Rachev, S.T., Römisch, W.: Quantitative stability in stochastic programming: the method of probability metrics. Mathematics of Operations Research 27(4), 792–818 (2002)
Heitsch, H., Römisch, W., Strugarek, C.: Stability of multistage stochastic programs. SIAM Journal on Optimization 17(2), 511–525 (2006)
Pflug, G.C.: Scenario tree generation for multiperiod financial optimization by optimal discretization. Mathematical Programming 89(2, Ser. B), 251–271 (2001)
Dupačová, J., Gröwe-Kuska, N., Römisch, W.: Scenario reduction in stochastic programming. An approach using probability metrics. Mathematical Programming 95(3, Ser. A), 493–511 (2003)
Pennanen, T., Koivu, M.: Epi-convergent discretizations of stochastic programs via integration quadratures. Numerische Mathematik 100(1), 141–163 (2005)
Koivu, M.: Variance reduction in sample approximations of stochastic programs. Mathematical Programming 103(3, Ser. A), 463–485 (2005)
Pennanen, T.: Epi-convergent discretizations of multistage stochastic programs via integration quadratures. Mathematical Programming 116(1-2, Ser. B), 461–479 (2009)
Topaloglou, N., Vladimirou, H., Zenios, S.: Cvar models with selective hedging for international asset allocation. Journal of Banking and Finance 26(7), 1535–1561 (2002)
Hochreiter, R., Pflug, G.C.: Financial scenario generation for stochastic multi-stage decision processes as facility location problems. Annals of Operations Research 152(1), 257–272 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hochreiter, R. (2009). Algorithmic Aspects of Scenario-Based Multi-stage Decision Process Optimization. In: Rossi, F., Tsoukias, A. (eds) Algorithmic Decision Theory. ADT 2009. Lecture Notes in Computer Science(), vol 5783. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04428-1_32
Download citation
DOI: https://doi.org/10.1007/978-3-642-04428-1_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04427-4
Online ISBN: 978-3-642-04428-1
eBook Packages: Computer ScienceComputer Science (R0)