Abstract
This paper is devoted to preference-based recommendation or configuration in the context of multiagent (or multicriteria) decision making. More precisely, we study the use of decomposable utility functions in the search for Choquet-optimal solutions on combinatorial domains. We consider problems where the alternatives (feasible solutions) are represented as elements of a product set of finite domains and evaluated according to different points of view (agents or criteria) leading to different objectives. Assuming that objectives take the form of GAI-utility functions over attributes, we investigate the use of GAI networks to determine efficiently an element maximizing an overall utility function defined by a Choquet integral.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Domshlak, C., Brafman, R.: CP-nets: Reasoning and consistency testing. In: Proc. of KR (2002)
Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., Poole, D.: CP-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements. Journal of Artificial Intelligence Research 21, 135–191 (2004)
Rossi, F., Venable, K.B., Walsh, T.: mCP nets: Representing and reasoning with preferences of multiple agents. In: Proc. of AAAI, pp. 729–734 (2004)
Boutilier, C., Bacchus, F., Brafman, R.: UCP-networks; a directed graphical representation of conditional utilities. In: Proc. of UAI (2001)
Gonzales, C., Perny, P.: GAI networks for utility elicitation. In: KR (2004)
Braziunas, D., Boutilier, C.: Local utility elicitation in GAI models. In: Proc. of UAI (2005)
Gonzales, C., Perny, P., Queiroz, S.: GAI networks: Optimization, ranking and collective choice in combinatorial domains. Foundations of computing and decision sciences 32(4), 3–24 (2008)
Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives - Preferences and Value Tradeoffs. Cambridge University Press, Cambridge (1993)
Krantz, D., Luce, R.D., Suppes, P., Tversky, A.: Foundations of Measurement (Additive and Polynomial Representations), vol. 1. Academic Press, London (1971)
Bacchus, F., Grove, A.: Graphical models for preference and utility. In: Proc. of UAI (1995)
Fishburn, P.C.: Interdependence and additivity in multivariate, unidimensional expected utility theory. International Economic Review 8, 335–342 (1967)
Gonzales, C., Perny, P.: GAI networks for decision making under certainty. In: IJCAI 2005 – Workshop on Advances in Preference Handling (2005)
Cowell, R., Dawid, A., Lauritzen, S., Spiegelhalter, D.: Probabilistic Networks and Expert Systems. Stats for Engineering and Information Science. Springer, Heidelberg (1999)
Dubus, J.P., Gonzales, C., Perny, P.: Multiobjective optimization using GAI models. In: Proc. of IJCAI (2009)
Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, 131–295 (1953)
Shapley, L.: Cores of convex games. Int. J. of Game Theory 1, 11–22 (1971)
Gonzales, C., Perny, P., Queiroz, S.: Preference aggregation with graphical utility models. In: Proc. of AAAI, pp. 1037–1042 (2008)
Stewart, B.S., White III, C.C.: Multiobjective A*. J. ACM 38(4), 775–814 (1991)
Chateauneuf, A., Tallon, J.M.: Diversification, convex preferences and non-empty core in the choquet expected utlity model. Economic Theory 19, 509–523 (2002)
Jaffray, J.Y.: On the maximum probability which is consistent with a convex capacity. Int. J. of Uncertainty, Fuzziness and KB Systems 3(1), 27–34 (1995)
Galand, L., Perny, P.: Search for choquet-optimal paths under uncertainty. In: Proc. of UAI, pp. 125–132 (2007)
Queiroz, S.: Multiperson Choquet-compromise search on large combinatorial domains. In: 2nd IEEE Int. Workshop on Soft Comp. Applications, pp. 187–192 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dubus, JP., Gonzales, C., Perny, P. (2009). Choquet Optimization Using GAI Networks for Multiagent/Multicriteria Decision-Making. In: Rossi, F., Tsoukias, A. (eds) Algorithmic Decision Theory. ADT 2009. Lecture Notes in Computer Science(), vol 5783. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04428-1_33
Download citation
DOI: https://doi.org/10.1007/978-3-642-04428-1_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04427-4
Online ISBN: 978-3-642-04428-1
eBook Packages: Computer ScienceComputer Science (R0)