Skip to main content

Choquet Optimization Using GAI Networks for Multiagent/Multicriteria Decision-Making

  • Conference paper
Algorithmic Decision Theory (ADT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5783))

Included in the following conference series:

  • 1081 Accesses

Abstract

This paper is devoted to preference-based recommendation or configuration in the context of multiagent (or multicriteria) decision making. More precisely, we study the use of decomposable utility functions in the search for Choquet-optimal solutions on combinatorial domains. We consider problems where the alternatives (feasible solutions) are represented as elements of a product set of finite domains and evaluated according to different points of view (agents or criteria) leading to different objectives. Assuming that objectives take the form of GAI-utility functions over attributes, we investigate the use of GAI networks to determine efficiently an element maximizing an overall utility function defined by a Choquet integral.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Domshlak, C., Brafman, R.: CP-nets: Reasoning and consistency testing. In: Proc. of KR (2002)

    Google Scholar 

  2. Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., Poole, D.: CP-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements. Journal of Artificial Intelligence Research 21, 135–191 (2004)

    Article  MathSciNet  Google Scholar 

  3. Rossi, F., Venable, K.B., Walsh, T.: mCP nets: Representing and reasoning with preferences of multiple agents. In: Proc. of AAAI, pp. 729–734 (2004)

    Google Scholar 

  4. Boutilier, C., Bacchus, F., Brafman, R.: UCP-networks; a directed graphical representation of conditional utilities. In: Proc. of UAI (2001)

    Google Scholar 

  5. Gonzales, C., Perny, P.: GAI networks for utility elicitation. In: KR (2004)

    Google Scholar 

  6. Braziunas, D., Boutilier, C.: Local utility elicitation in GAI models. In: Proc. of UAI (2005)

    Google Scholar 

  7. Gonzales, C., Perny, P., Queiroz, S.: GAI networks: Optimization, ranking and collective choice in combinatorial domains. Foundations of computing and decision sciences 32(4), 3–24 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives - Preferences and Value Tradeoffs. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  9. Krantz, D., Luce, R.D., Suppes, P., Tversky, A.: Foundations of Measurement (Additive and Polynomial Representations), vol. 1. Academic Press, London (1971)

    MATH  Google Scholar 

  10. Bacchus, F., Grove, A.: Graphical models for preference and utility. In: Proc. of UAI (1995)

    Google Scholar 

  11. Fishburn, P.C.: Interdependence and additivity in multivariate, unidimensional expected utility theory. International Economic Review 8, 335–342 (1967)

    Article  Google Scholar 

  12. Gonzales, C., Perny, P.: GAI networks for decision making under certainty. In: IJCAI 2005 – Workshop on Advances in Preference Handling (2005)

    Google Scholar 

  13. Cowell, R., Dawid, A., Lauritzen, S., Spiegelhalter, D.: Probabilistic Networks and Expert Systems. Stats for Engineering and Information Science. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  14. Dubus, J.P., Gonzales, C., Perny, P.: Multiobjective optimization using GAI models. In: Proc. of IJCAI (2009)

    Google Scholar 

  15. Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, 131–295 (1953)

    Article  MathSciNet  Google Scholar 

  16. Shapley, L.: Cores of convex games. Int. J. of Game Theory 1, 11–22 (1971)

    Article  MathSciNet  Google Scholar 

  17. Gonzales, C., Perny, P., Queiroz, S.: Preference aggregation with graphical utility models. In: Proc. of AAAI, pp. 1037–1042 (2008)

    Google Scholar 

  18. Stewart, B.S., White III, C.C.: Multiobjective A*. J. ACM 38(4), 775–814 (1991)

    Article  Google Scholar 

  19. Chateauneuf, A., Tallon, J.M.: Diversification, convex preferences and non-empty core in the choquet expected utlity model. Economic Theory 19, 509–523 (2002)

    Article  MathSciNet  Google Scholar 

  20. Jaffray, J.Y.: On the maximum probability which is consistent with a convex capacity. Int. J. of Uncertainty, Fuzziness and KB Systems 3(1), 27–34 (1995)

    Article  MathSciNet  Google Scholar 

  21. Galand, L., Perny, P.: Search for choquet-optimal paths under uncertainty. In: Proc. of UAI, pp. 125–132 (2007)

    Google Scholar 

  22. Queiroz, S.: Multiperson Choquet-compromise search on large combinatorial domains. In: 2nd IEEE Int. Workshop on Soft Comp. Applications, pp. 187–192 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dubus, JP., Gonzales, C., Perny, P. (2009). Choquet Optimization Using GAI Networks for Multiagent/Multicriteria Decision-Making. In: Rossi, F., Tsoukias, A. (eds) Algorithmic Decision Theory. ADT 2009. Lecture Notes in Computer Science(), vol 5783. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04428-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04428-1_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04427-4

  • Online ISBN: 978-3-642-04428-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics