Abstract
Stochastic inventory control in multi-echelon systems poses hard problems in optimisation under uncertainty. Stochastic programming can solve small instances optimally, and approximately solve large instances via scenario reduction techniques, but it cannot handle arbitrary nonlinear constraints or other non-standard features. Simulation optimisation is an alternative approach that has recently been applied to such problems, using policies that require only a few decision variables to be determined. However, to find optimal or near-optimal solutions we must consider exponentially large scenario trees with a corresponding number of decision variables. We propose a neuroevolutionary approach: using an artificial neural network to approximate the scenario tree, and training the network by a simulation-based evolutionary algorithm. We show experimentally that this method can quickly find good plans.
B. Hnich is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant No. SOBAG-108K027. This material is based in part upon works supported by the Science Foundation Ireland under Grant No. 05/IN/I886.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arnold, J., Köchel, P.: Evolutionary Optimisation of a Multi-Location Inventory Model With Lateral Transshipments. In: 9th International Working Seminar on Production Economics, Igls, vol. 2, pp. 401–412 (1996); Preprints
Bäck, T., Hoffmeister, F., Schwefel, H.-P.: A Survey of Evolution Strategies. In: 4th International Conference on Genetic Algorithms (1991)
Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (1997)
Chaharsooghi, S.K., Heydari, J., Zegordi, S.H.: A Reinforcement Learning Model for Supply Chain Ordering Management: an Application to the Beer Game. Decision Support Systems 45(4), 949–959 (2008)
Fu, M.C.: Optimization for Simulation: Theory vs Practice. INFORMS Journal of Computing 14, 192–215 (2002)
Gaafar, L.K., Choueiki, M.H.: A Neural Network Model for Solving the Lot-Sizing Problem. Omega 28(2), 175–184 (2000)
Giannoccaro, I., Pontrandolfo, P.: Inventory Management in Supply Chains: a Reinforcement Learning Approach. International Journal of Production Economics 78(2), 153–161 (2002)
Gomez, F., Schmidhuber, J., Miikkulainen, R.: Efficient Non-Linear Control Through Neuroevolution. Journal of Machine Learning Research 9, 937–965 (2008)
Hewahi, N.M.: Engineering Industry Controllers Using Neuroevolution. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 19(1), 49–57 (2005)
Jiang, C., Shenga, Z.: Case-Based Reinforcement Learning for Dynamic Inventory Control in a Multi-Agent Supply-Chain System. Expert Systems with Applications 36(3 part 2), 6520–6526 (2009)
Kleinau, P., Thonemann, U.W.: Deriving Inventory-Control Policies With Genetic Programming. OR Spectrum 26(4), 521–546 (2004)
Köchel, P.: Simulation (Optimisation) in Inventory Theory. Tutorial, 8th ISIR Summer School on New and Classical Streams in Inventory Management: Advances in Research and Opening Frontiers (2007)
Köchel, P., Nieländer, U.: Simulation-Based Optimisation of Multi-Echelon Inventory Systems. International Journal of Production Economics 1, 503–513 (2005)
Lubberts, A., Miikkulainen, R.: Co-Evolving a Go-Playing Neural Network. In: Genetic and Evolutionary Computation Conference, pp. 14–19. Kaufmann, San Francisco (2001)
Olsen, A.L.: An Evolutionary Algorithm for the Joint Replenishment of Inventory with Interdependent Ordering Costs. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 2416–2417. Springer, Heidelberg (2003)
Pollack, J.B., Blair, A.D.: Co-Evolution in the Successful Learning of Backgammon Strategy. Machine Learning 32(3), 225–240 (1998)
Prestwich, S.D., Tarim, S.A., Rossi, R., Hnich, B.: A Steady-State Genetic Algorithm With Resampling for Noisy Inventory Control. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 559–568. Springer, Heidelberg (2008)
Prestwich, S.D., Tarim, S.A., Rossi, R., Hnich, B.: A Cultural Algorithm for POMDPs from Stochastic Inventory Control. In: Blesa, M.J., Blum, C., Cotta, C., Fernández, A.J., Gallardo, J.E., Roli, A., Sampels, M. (eds.) HM 2008. LNCS, vol. 5296, pp. 16–28. Springer, Heidelberg (2008)
Van Roy, B., Bertsekas, D.P., Lee, Y., Tsitsiklis, J.N.: A Neuro-Dynamic Programming Approach to Retailer Inventory Management. In: Proceedings of the IEEE Conference on Decision and Control (1997)
Schaffer, J., Whitley, D., Eshelman, L.: Combinations of Genetic Algorithms and Neural Networks: A Survey of the State of the Art. In: International Workshop on Combinations of Genetic Algorithms and Neural Networks, pp. 1–37 (1992)
Stanley, K.O., Miikkulainen, R.: Evolving Neural Networks Through Augmenting Topologies. Evolutionary Computation 10(2), 99–127 (2002)
Tarim, S.A., Manandhar, S., Walsh, T.: Stochastic Constraint Programming: A Scenario-Based Approach. Constraints 11, 53–80 (2006)
Thierens, D.: Non-Redundant Genetic Coding of Neural Networks. In: International Conference on Evolutionary Computation, Nagoya, Japan, pp. 571–575 (1996)
Yao, X., Liu, Y., Lin, G.: Evolutionary Programming Made Faster. IEEE Transactions on Evolutionary Computation 3(2), 82–102 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Prestwich, S.D., Tarim, S.A., Rossi, R., Hnich, B. (2009). Neuroevolutionary Inventory Control in Multi-Echelon Systems. In: Rossi, F., Tsoukias, A. (eds) Algorithmic Decision Theory. ADT 2009. Lecture Notes in Computer Science(), vol 5783. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04428-1_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-04428-1_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04427-4
Online ISBN: 978-3-642-04428-1
eBook Packages: Computer ScienceComputer Science (R0)