Skip to main content

Neuroevolutionary Inventory Control in Multi-Echelon Systems

  • Conference paper
Algorithmic Decision Theory (ADT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5783))

Included in the following conference series:

  • 1097 Accesses

Abstract

Stochastic inventory control in multi-echelon systems poses hard problems in optimisation under uncertainty. Stochastic programming can solve small instances optimally, and approximately solve large instances via scenario reduction techniques, but it cannot handle arbitrary nonlinear constraints or other non-standard features. Simulation optimisation is an alternative approach that has recently been applied to such problems, using policies that require only a few decision variables to be determined. However, to find optimal or near-optimal solutions we must consider exponentially large scenario trees with a corresponding number of decision variables. We propose a neuroevolutionary approach: using an artificial neural network to approximate the scenario tree, and training the network by a simulation-based evolutionary algorithm. We show experimentally that this method can quickly find good plans.

B. Hnich is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant No. SOBAG-108K027. This material is based in part upon works supported by the Science Foundation Ireland under Grant No. 05/IN/I886.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arnold, J., Köchel, P.: Evolutionary Optimisation of a Multi-Location Inventory Model With Lateral Transshipments. In: 9th International Working Seminar on Production Economics, Igls, vol. 2, pp. 401–412 (1996); Preprints

    Google Scholar 

  2. Bäck, T., Hoffmeister, F., Schwefel, H.-P.: A Survey of Evolution Strategies. In: 4th International Conference on Genetic Algorithms (1991)

    Google Scholar 

  3. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (1997)

    MATH  Google Scholar 

  4. Chaharsooghi, S.K., Heydari, J., Zegordi, S.H.: A Reinforcement Learning Model for Supply Chain Ordering Management: an Application to the Beer Game. Decision Support Systems 45(4), 949–959 (2008)

    Article  Google Scholar 

  5. Fu, M.C.: Optimization for Simulation: Theory vs Practice. INFORMS Journal of Computing 14, 192–215 (2002)

    Article  MathSciNet  Google Scholar 

  6. Gaafar, L.K., Choueiki, M.H.: A Neural Network Model for Solving the Lot-Sizing Problem. Omega 28(2), 175–184 (2000)

    Article  Google Scholar 

  7. Giannoccaro, I., Pontrandolfo, P.: Inventory Management in Supply Chains: a Reinforcement Learning Approach. International Journal of Production Economics 78(2), 153–161 (2002)

    Article  Google Scholar 

  8. Gomez, F., Schmidhuber, J., Miikkulainen, R.: Efficient Non-Linear Control Through Neuroevolution. Journal of Machine Learning Research 9, 937–965 (2008)

    MATH  Google Scholar 

  9. Hewahi, N.M.: Engineering Industry Controllers Using Neuroevolution. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 19(1), 49–57 (2005)

    Article  Google Scholar 

  10. Jiang, C., Shenga, Z.: Case-Based Reinforcement Learning for Dynamic Inventory Control in a Multi-Agent Supply-Chain System. Expert Systems with Applications 36(3 part 2), 6520–6526 (2009)

    Article  Google Scholar 

  11. Kleinau, P., Thonemann, U.W.: Deriving Inventory-Control Policies With Genetic Programming. OR Spectrum 26(4), 521–546 (2004)

    Article  MathSciNet  Google Scholar 

  12. Köchel, P.: Simulation (Optimisation) in Inventory Theory. Tutorial, 8th ISIR Summer School on New and Classical Streams in Inventory Management: Advances in Research and Opening Frontiers (2007)

    Google Scholar 

  13. Köchel, P., Nieländer, U.: Simulation-Based Optimisation of Multi-Echelon Inventory Systems. International Journal of Production Economics 1, 503–513 (2005)

    Google Scholar 

  14. Lubberts, A., Miikkulainen, R.: Co-Evolving a Go-Playing Neural Network. In: Genetic and Evolutionary Computation Conference, pp. 14–19. Kaufmann, San Francisco (2001)

    Google Scholar 

  15. Olsen, A.L.: An Evolutionary Algorithm for the Joint Replenishment of Inventory with Interdependent Ordering Costs. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 2416–2417. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Pollack, J.B., Blair, A.D.: Co-Evolution in the Successful Learning of Backgammon Strategy. Machine Learning 32(3), 225–240 (1998)

    Article  Google Scholar 

  17. Prestwich, S.D., Tarim, S.A., Rossi, R., Hnich, B.: A Steady-State Genetic Algorithm With Resampling for Noisy Inventory Control. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 559–568. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Prestwich, S.D., Tarim, S.A., Rossi, R., Hnich, B.: A Cultural Algorithm for POMDPs from Stochastic Inventory Control. In: Blesa, M.J., Blum, C., Cotta, C., Fernández, A.J., Gallardo, J.E., Roli, A., Sampels, M. (eds.) HM 2008. LNCS, vol. 5296, pp. 16–28. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Van Roy, B., Bertsekas, D.P., Lee, Y., Tsitsiklis, J.N.: A Neuro-Dynamic Programming Approach to Retailer Inventory Management. In: Proceedings of the IEEE Conference on Decision and Control (1997)

    Google Scholar 

  20. Schaffer, J., Whitley, D., Eshelman, L.: Combinations of Genetic Algorithms and Neural Networks: A Survey of the State of the Art. In: International Workshop on Combinations of Genetic Algorithms and Neural Networks, pp. 1–37 (1992)

    Google Scholar 

  21. Stanley, K.O., Miikkulainen, R.: Evolving Neural Networks Through Augmenting Topologies. Evolutionary Computation 10(2), 99–127 (2002)

    Article  Google Scholar 

  22. Tarim, S.A., Manandhar, S., Walsh, T.: Stochastic Constraint Programming: A Scenario-Based Approach. Constraints 11, 53–80 (2006)

    Article  MathSciNet  Google Scholar 

  23. Thierens, D.: Non-Redundant Genetic Coding of Neural Networks. In: International Conference on Evolutionary Computation, Nagoya, Japan, pp. 571–575 (1996)

    Google Scholar 

  24. Yao, X., Liu, Y., Lin, G.: Evolutionary Programming Made Faster. IEEE Transactions on Evolutionary Computation 3(2), 82–102 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Prestwich, S.D., Tarim, S.A., Rossi, R., Hnich, B. (2009). Neuroevolutionary Inventory Control in Multi-Echelon Systems. In: Rossi, F., Tsoukias, A. (eds) Algorithmic Decision Theory. ADT 2009. Lecture Notes in Computer Science(), vol 5783. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04428-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04428-1_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04427-4

  • Online ISBN: 978-3-642-04428-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics