Skip to main content

Anytime Self-play Learning to Satisfy Functional Optimality Criteria

  • Conference paper
Algorithmic Decision Theory (ADT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5783))

Included in the following conference series:

  • 1014 Accesses

Abstract

We present an anytime multiagent learning approach to satisfy any given optimality criterion in repeated game self-play. Our approach is opposed to classical learning approaches for repeated games: namely, learning of equilibrium, Pareto-efficient learning, and their variants. The comparison is given from a practical (or engineering) standpoint, i.e., from a point of view of a multiagent system designer whose goal is to maximize the system’s overall performance according to a given optimality criterion. Extensive experiments in a wide variety of repeated games demonstrate the efficacy of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bowling, M., Veloso, M.: Multiagent learning using a variable learning rate. Artificial Intelligence 136(2), 215–250 (2002)

    Article  MathSciNet  Google Scholar 

  2. Claus, C., Boutilier, C.: The dynamics of reinforcement learning in cooperative multiagent systems. In: Proceedings of AAAI 1998 (1998)

    Google Scholar 

  3. Hu, J., Wellman, M.: Nash Q-learning for general-sum stochastic games. Journal of ML Research 4, 1039–1069 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Banerjee, B., Peng, J.: Performance bounded reinforcement learning in strategic interactions. In: Proceedings of AAAI 2004 (2004)

    Google Scholar 

  5. Greenwald, A.: Correlated-Q learning. In: AAAI Spring Symposium (2003)

    Google Scholar 

  6. Crandall, J., Goodrich, M.: Learning to compete, compromise, and cooperate in repeated general-sum games. In: Proceedings ICML 2005 (2005)

    Google Scholar 

  7. Littman, M., Stone, P.: A polynomial-time Nash equilibrium algorithm for repeated games. Decision Support Systems 39(1), 55–66 (2005)

    Article  Google Scholar 

  8. Nash, J.: The Bargaining Problem. Econometrica 18(2), 155–162 (1950)

    Article  MathSciNet  Google Scholar 

  9. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  10. de Farias, D., Megiddo, N., Cambridge, M., San Jose, C.: Exploration-Exploitation Tradeoffs for Experts Algorithms in Reactive Environments. In: Advances in Neural Information Processing Systems 17: Proceedings of The 2004 Conference. MIT Press, Cambridge (2005)

    Google Scholar 

  11. Singh, S., Jaakkola, T., Littman, M., Szepesvári, C.: Convergence Results for Single-Step On-Policy Reinforcement-Learning Algorithms. Machine Learning 38(3), 287–308 (2000)

    Article  Google Scholar 

  12. Chalkiadakis, G., Boutilier, C.: Coordination in multiagent reinforcement learning: A bayesian approach. In: Proceedings of the Second International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2003), Melbourne, Australia (2003)

    Google Scholar 

  13. Brams, S.: Theory of Moves. American Scientist 81(6), 562–570 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burkov, A., Chaib-draa, B. (2009). Anytime Self-play Learning to Satisfy Functional Optimality Criteria. In: Rossi, F., Tsoukias, A. (eds) Algorithmic Decision Theory. ADT 2009. Lecture Notes in Computer Science(), vol 5783. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04428-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04428-1_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04427-4

  • Online ISBN: 978-3-642-04428-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics