Abstract
We investigate the problem of selecting a committee consisting of k members from a list of m candidates. The selection of each candidate consumes a certain weight (or cost). Hence, the choice of the k-committee has to satisfy a weight (or budget) constraint: The sum of the weights of all selected committee members must not exceed a given value W. While the former part of the problem is a typical question in Social Choice Theory, the latter stems from Discrete Optimization. The purpose of our contribution is to link these two research fields: We first define reasonable ways of ranking sets of objects, i.e. candidates, and then develop efficient algorithms for the actual computation of optimal committees. We focus in particular on the running time complexity of the developed algorithms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barbera, S., Bossert, W., Pattanaik, P.K.: Ranking Sets of Objects. In: Barbera, S., Hammond, P.J., Seidl, C. (eds.) Handbook of Utility Theory, vol. 2. Kluwer Academic Publishers, Boston (2004)
Barbera, S., Masso, J., Neme, A.: Voting by committees under constraints. Journal of Economic Theory 122, 185–205 (2005)
Brams, S.J., Fishburn, P.C.: Voting Procedures. In: Arrow, K.J., Sen, A.K., Suzumura, K. (eds.) Handbook of Social Choice and Welfare, vol. 1, pp. 173–236. Elsevier, Amsterdam (2002)
Caprara, A., Kellerer, H., Pferschy, U., Pisinger, D.: Approximation algorithms for knapsack problems with cardinality constraints. European Journal of Operational Research 123, 333–345 (2000)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)
Darmann, A., Klamler, C., Pferschy, U.: Finding socially best spanning trees. Social Science Research Network (2008), http://ssrn.com/abstract=1328916
Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004)
Klamler, C., Pferschy, U.: The traveling group problem. Social Choice and Welfare 29, 429–452 (2007)
Klamler, C., Pferschy, U., Ruzika, S.: Committee selection under weight constraints. Technical Report, available in: Social Science Research Network (2009), http://ssrn.com/abstract=1361770
Pattanaik, P.K., Peleg, B.: An axiomatic characterization of the lexicographic maximin extension of an ordering over a set to the power set. Social Choice and Welfare 1, 113–122 (1984)
Perny, P., Spanjaard, O.: A preference-based approach to spanning trees and shortest paths problems. European Journal of Operational Research 162, 584–601 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Klamler, C., Pferschy, U., Ruzika, S. (2009). Committee Selection with a Weight Constraint Based on Lexicographic Rankings of Individuals. In: Rossi, F., Tsoukias, A. (eds) Algorithmic Decision Theory. ADT 2009. Lecture Notes in Computer Science(), vol 5783. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04428-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-04428-1_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04427-4
Online ISBN: 978-3-642-04428-1
eBook Packages: Computer ScienceComputer Science (R0)