Skip to main content

The Complexity of Probabilistic Lobbying

  • Conference paper
Algorithmic Decision Theory (ADT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5783))

Included in the following conference series:

  • 1122 Accesses

Abstract

We propose various models for lobbying in a probabilistic environment, in which an actor (called “The Lobby”) seeks to influence the voters’ preferences of voting for or against multiple issues when the voters’ preferences are represented in terms of probabilities. In particular, we provide two evaluation criteria and three bribery methods to formally describe these models, and we consider the resulting forms of lobbying with and without issue weighting. We provide a formal analysis for these problems of lobbying in a stochastic environment, and determine their classical and parameterized complexity depending on the given bribery/evaluation criteria. Specifically, we show that some of these problems can be solved in polynomial time, some are NP-complete but fixed-parameter tractable, and some are W[2]-complete. Finally, we provide (in)approximability results.

Supported in part by DFG grants RO 1202/11-1 and RO 1202/12-1, the European Science Foundation’s EUROCORES program LogICCC, the Alexander von Humboldt Foundation’s TransCoop program, and NSF grant ITR-0325063.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baye, M., Kovenock, D., de Vries, C.: Rigging the lobbying process: An application of the all-pay auction. The American Economic Review 83(1), 289–294 (1993)

    Google Scholar 

  2. Baye, M., Kovenock, D., de Vries, C.: The all-pay auction with complete information. Economic Theory 8(2), 291–305 (1996)

    Article  MathSciNet  Google Scholar 

  3. Bellare, M., Goldwasser, S., Lund, C., Russell, A.: Efficient probabilistically checkable proofs and applications to approximations. In: Proceedings of the 25th ACM Symposium on Theory of Computing, pp. 294–304. ACM Press, New York (1993)

    Google Scholar 

  4. Cesati, M.: The Turing way to parameterized complexity. Journal of Computer and System Sciences 67, 654–685 (2003)

    Article  MathSciNet  Google Scholar 

  5. Christian, R., Fellows, M., Rosamond, F., Slinko, A.: On complexity of lobbying in multiple referenda. Review of Economic Design 11(3), 217–224 (2007)

    Article  MathSciNet  Google Scholar 

  6. Crombez, C.: Information, lobbying and the legislative process in the European Union. European Union Politics 3(1), 7–32 (2002)

    Article  Google Scholar 

  7. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)

    Book  Google Scholar 

  8. Erdélyi, G., Fernau, H., Goldsmith, J., Mattei, N., Raible, D., Rothe, J.: The complexity of probabilistic lobbying. Technical Report arXiv:0906.4431 [cs.CC]. ACM Computing Research Repository (CoRR) (June 2009)

    Google Scholar 

  9. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: A richer understanding of the complexity of election systems. In: Ravi, S., Shukla, S. (eds.) Fundamental Problems in Computing: Essays in Honor of Professor Daniel J. Rosenkrantz, ch. 14, pp. 375–406. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Lindner, C., Rothe, J.: Fixed-parameter tractability and parameterized complexity, applied to problems from computational social choice. In: Holder, A. (ed.) Mathematical Programming Glossary. INFORMS Computing Society (October 2008)

    Google Scholar 

  11. Myerson, R., Weber, R.: A theory of voting equilibria. The American Political Science Review 87(1), 102–114 (1993)

    Article  Google Scholar 

  12. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In: Proceedings of the 29th ACM Symposium on Theory of Computing, pp. 475–484. ACM Press, New York (1997)

    Google Scholar 

  13. Reinganum, J.: A formal theory of lobbying behaviour. Optimal Control Applications and Methods 4(4), 71–84 (1983)

    Article  MathSciNet  Google Scholar 

  14. Sandholm, T., Suri, S., Gilpin, A., Levine, D.: Winner determination in combinatorial auction generalizations. In: Proceedings of the 1st International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 69–76. ACM Press, New York (2002)

    Google Scholar 

  15. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Erdélyi, G., Fernau, H., Goldsmith, J., Mattei, N., Raible, D., Rothe, J. (2009). The Complexity of Probabilistic Lobbying. In: Rossi, F., Tsoukias, A. (eds) Algorithmic Decision Theory. ADT 2009. Lecture Notes in Computer Science(), vol 5783. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04428-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04428-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04427-4

  • Online ISBN: 978-3-642-04428-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics