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Abstract

We propose various models for lobbying in a probabilistic environment, in which an actor
(called “The Lobby”) seeks to influence the voters’ preferences of voting for or against multiple
issues when the voters’ preferences are represented in terms of probabilities. In particular, we
provide two evaluation criteria and three bribery methods to formally describe these models,
and we consider the resulting forms of lobbying with and without issue weighting. We provide
a formal analysis for these problems of lobbying in a stochastic environment, and determine
their classical and parameterized complexity depending onthe given bribery/evaluation criteria.
Specifically, we show that some of these problems can be solved in polynomial time, some are
NP-complete but fixed-parameter tractable, and some are W[2]-complete. Finally, we provide
(in)approximability results.

1 Introduction

In the American political system, laws are passed by electedofficials who are supposed to repre-
sent their constituency. Individual entities such as citizens or corporations are not supposed to have
undue influence in the wording or passage of a law. However, they are allowed to make contribu-
tions to representatives, and it is common to include an indication that the contribution carries an
expectation that the representative will vote a certain wayon a particular issue.
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Many factors can affect a representative’s vote on a particular issue. There are the represen-
tative’s personal beliefs about the issue, which presumably were part of the reason that the con-
stituency elected them. There are also the campaign contributions, communications from con-
stituents, communications from potential donors, and the representative’s own expectations of fur-
ther contributions and political support.

It is a complicated process to reason about. Earlier work considered the problem of meting out
contributions to representatives in order to pass a set of laws or influence a set of votes. However,
the earlier computational complexity work on this problem made the assumption that a politician
who accepts a contribution will in fact—if the contributionmeets a given threshold—vote according
to the wishes of the donor.

It is said that “An honest politician is one who stays bought,” but that does not take into account
the ongoing pressures from personal convictions and opposing lobbyists and donors. We consider
the problem of influencing a set of votes under the assumptionthat we can influence only theprob-
ability that the politician votes as we desire.

There are several axes along which we complicate the picture. The first is the notion of suffi-
ciency: What does it mean to say we have donated enough to influence the vote? Does it mean that
the probability that a single vote will go our way is greater than some threshold? That the probabil-
ity that all the votes go our way is greater than that threshold? We discuss these and other criteria in
the section on evaluation criteria.

How does one donate money to a campaign? In the United States there are several laws that
influence how, when, and how much a particular person or organization can donate to a particu-
lar candidate. We examine ways in which money can be channeled into the political process in
Section 2.1

Lobbying has been studied formally by economists, computerscientists, and special interest
groups since at least 1983 [21] and as an extension to formal game theory since 1944 [19]. Each
discipline has considered mostly disjoint aspects of the process while seeking to accomplish distinct
goals with their respective formal models. Economists haveformalized models and studied them as
“economic games,” as defined by von Neumann and Morgenstern [19]. This analysis is focused on
learning how these complex systems work and deducing optimal strategies for winning the competi-
tions [21,1,2]. This work has also focused on how to “rig” a vote and how to optimally dispense the
funds among the various individuals [1]. Economists are interested in finding effective and efficient
bribery schemes [1] as well as determining strategies for instances of two or more players [1,21,
2]. Generally, they reduce the problem of finding an effective lobbying strategy to one of finding a
winning strategy for the specific type of game. Economists have also formalized this problem for
bribery systems in both the United States [21] and the European Union [6].

In the emerging field of computational social choice, votingand preference aggregation are
studied from a computational perspective, with a particular focus on the complexity of winner de-
termination, manipulation, procedural control, and bribery in elections (see, e.g., the survey [14]
and the references cited therein), and also with respect to lobbying in the context of direct democ-
racy where voters vote on multiple referenda. In particular, Christian et al. [5] show that “Optimal

1We stress that when we use the term “bribery” in this paper, itis meant in the sense of lobbying [5], not in the sense
Faliszewski et al. [9] define bribery (see also, e.g., [10,13,11]).
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Lobbying” (OL) is complete for the (parameterized) complexity class W[2]. The OL problem is
a deterministic and nonweighted version of the problems that we present in this paper. Erdélyi et
al. [8] extend “Optimal Lobbying” into “Optimal Weighted Lobbying” (OWL) by allowing differ-
ent voters to have different prices. This in turn can be seen as a special case of a “binary multi-unit
combinatorial reverse auction winner-determination problem,” see Sandholm et al. [22].

We extend the models of lobbying, and provide algorithms andanalysis for these extended mod-
els in terms of classical and parameterized complexity. Ourproblems are still related to the reverse
auction winner-determination problem—in particular, ourextensions of the optimal lobbying prob-
lem allow the seller to express desire over the objects, thuscrucially changing the original problem
in both the economic and complexity-theoretic senses. Thischange is a result of the probabilistic
modeling of the seller’s reaction to the bribery. We also show novel computational and algorithmic
approaches to these new problems. In this way we add breadth and depth to not only the models but
also the understanding of lobbying behavior.

2 Models for Probabilistic Lobbying

2.1 Initial Model

We begin with a simplistic version of the PROBABILISTIC LOBBYING PROBLEM (PLP, for short),
in which voters start with initial probabilities of voting for an issue and are assigned known costs
for increasing their probabilities of voting according to “The Lobby’s” agenda by each of a finite
set of increments.

The question, for this class of problems, is: Given the aboveinformation, along with an agenda
and a fixed budgetB, can The Lobby target its bribes in order to achieve its agenda? The complexity
of the problem seems to hinge on the evaluation criterion forwhat it means to “win a vote” or
“achieve an agenda.” We discuss the possible interpretations of evaluation and bribery later in this
section. First, however, we will formalize the problem by defining data objects needed to represent
the problem instances.2

LetQm×n
[0,1] denote the set ofm×n matrices overQ[0,1] (the rational numbers in the interval[0,1]).

We sayP∈Qm×n
[0,1] is a probability matrix (of sizem×n), where each entrypi, j of P gives the proba-

bility that votervi will vote “yes” for referendum (synonymously, for issue)r j . The result of a vote
can be either a “yes” (represented by 1) or a “no” (represented by 0). Thus, we can represent the
result of any vote on all issues as a 0/1 vector~X = (x1,x2, . . . ,xn), which is sometimes also denoted
as a string in{0,1}n.

We now associate with each pair(vi , r j) of voter/issue, a discrete price functionci, j for changing
vi ’s probability of voting “yes” for issuer j . Intuitively, ci, j gives the cost for The Lobby of raising
or lowering (in discrete steps) theith voter’s probability of voting “yes” on thejth issue. A formal
description is as follows.

Given the entriespi, j = ai, j/bi, j of a probability matrixP∈ Qm×n
[0,1] , choose somek ∈ N such that

k+1 is a common multiple of allbi, j , where 1≤ i ≤ m and 1≤ j ≤ n, and partition the probability

2A similar model was first discussed by Reinganum [21] in the continuous case and we translate it here to the discrete
case. This will allow us to present algorithms for, and the complexity analysis of, the problem.
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interval [0,1] into k+1 steps of size1/(k+1) each.3 For eachi ∈ {1,2, . . . ,m} and j ∈ {1,2, . . . ,n},
ci, j : {0,1/(k+1),2/(k+1), . . . ,k/(k+1),1}→ N is the(discrete) price function for pi, j , i.e.,ci, j (ℓ/(k+1)) is
the price for changing the probability of theith voter voting “yes” on thejth issue frompi, j to ℓ/(k+1),
where 0≤ ℓ ≤ k+1. Note that the domain ofci, j consists ofk+2 elements ofQ[0,1] including 0,
pi, j , and 1. In particular, we requireci, j (pi, j) = 0, i.e., a cost of zero is associated with leaving the
initial probability of votervi voting on issuer j unchanged. Note thatk = 0 meanspi, j ∈ {0,1},
i.e., in this case each voter either accepts or rejects each issue with certainty and The Lobby can
only flip these results.4 The image ofci, j consists ofk+ 2 nonnegative integers including 0, and
we require that, for any two elementsa,b in the domain ofci, j , if pi, j ≤ a≤ b or pi, j ≥ a≥ b, then
ci, j(a) ≤ ci, j (b). This guarantees monotonicity on the prices.

We represent the list of price functions associated with a probability matrix P as a tableCP

whosem·n rows give the price functionsci, j and whosek+2 columns give the costsci, j (ℓ/(k+1)),
where 0≤ ℓ≤ k+1. Note that we choose the samek for eachci, j , so we have the same number of
columns in each row ofCP. The entries ofCP can be thought of as “price tags” that The Lobby must
pay in order to change the probabilities of voting.

The Lobby also has an integer-valued budgetB and an “agenda,” which we will denote as a
vector~Z ∈ {0,1}n, wheren is the number of issues, containing the outcomes The Lobby would
like to see on the corresponding issues. For simplicity, we may assume that The Lobby’s agenda
is all “yes” votes, so the target vector is~Z = 1n. This assumption can be made without loss of
generality, since if there is a zero in~Z at position j, we can flip this zero to one and also change the
corresponding probabilitiesp1, j , p2, j , . . . , pm, j in the jth column ofP to 1− p1, j ,1− p2, j , . . . ,1− pm, j

(see the evaluation criteria in Section 2.3 for how to determine the result of voting on a referendum).

Example 1 We create a problem instance with k= 9, m= 2 (number of voters), and n= 3 (number
of issues). We will use this as a running example for the rest of this paper. In addition to the above
definitions for k, m, and n, we also give the following matrix for P. (Note that this example is
normalized for an agenda of~Z = 13, which is why The Lobby has no incentive for lowering the
acceptance probabilities, so those costs are omitted below.)

Our example consists of a probability matrix P:

r1 r2 r3

v1 0.8 0.3 0.5
v2 0.4 0.7 0.4

3There is some arbitrariness in this choice ofk. One might think of more flexible ways of partitioning[0,1]. We have
chosen this way for the sake of simplifying the representation, but we mention that all that matters is that for eachi and j ,
the discrete price functionci, j is defined on the valuepi, j , and is set to zero for this value.

4This is the special case of Optimal Lobbying.
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and the corresponding cost matrix CP:

ci, j 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

c1,1 −− −− −− −− −− −− −− −− 0 100 140
c1,2 −− −− −− 0 10 70 100 140 310 520 600
c1,3 −− −− −− −− −− 0 15 25 70 90 150
c2,1 −− −− −− −− 0 30 40 70 120 200 270
c2,2 −− −− −− −− −− −− −− 0 10 40 90
c2,3 −− −− −− −− 0 70 90 100 180 300 450

In Section 2.2, we describe three bribery methods, i.e., three specific ways in which The Lobby
can influence the voters. These will be referred to as Bi , i ∈ {1,2,3}. In addition to the three
bribery methods described in Section 2.2, we also define two ways in which The Lobby can win a
set of votes. These evaluation criteria are defined in Section 2.3 and will be referred to as Cj , j ∈
{1,2}. They are important because votes counted in different wayscan result in different outcomes
depending on voting and evaluation systems (cf. Myerson andWeber [18]).

We now introduce the six basic problems that we will study. For i ∈ {1,2,3} and j ∈ {1,2}, we
define:

Name: Bi -C j PROBABILISTIC LOBBYING PROBLEM (Bi -C j -PLP, for short).

Given: A probability matrixP∈Qm×n
[0,1] with tableCP of price functions, a target vector~Z ∈ {0,1}n,

and a budgetB.

Question: Is there a way for The Lobby to influenceP (using bribery method Bi and evaluation
criterion Cj , without exceeding budgetB) such that the result of the votes on all issues equals
~Z?

2.2 Bribery Methods

We begin by first formalizing the bribery methods by which TheLobby can influence votes on
issues. We will define three methods for donating this money.

2.2.1 Microbribery (B1)

The first method at the disposal of The Lobby is what we will call microbribery.5 We define mi-
crobribery to be the editing of individual elements of theP matrix according to the costs in theCP

matrix. Thus The Lobby picks not only which voter to influencebut also which issue to influence
for that voter. This bribery method allows the most flexible version of bribery, and models private
donations made to candidates in support of specific issues.

5Although our notion was inspired by theirs, we stress that itshould not be confused with the term “microbribery”
used by Faliszewski et al. [10,13,11] in the different context of bribing “irrational” voters in Llull/Copeland elections via
flipping single entries in their preference tables.

5



2.2.2 Issue Bribery (B2)

The second method at the disposal of The Lobby isissue bribery. We can see from theP matrix
that each column represents how the voters think about a particular issue. In this method of bribery,
The Lobby can pick a column of the matrix and edit it accordingto some budget. The money will
be equally distributed among all the voters and the voter probabilities will move accordingly. So,
for d dollars each voter receives a fraction ofd/m and their probability of voting “yes” changes
accordingly. This can be thought of as special-interest group donations. Special-interest groups
such as PETA focus on issues and dispense their funds across an issue rather than by voter. The
bribery could be funneled through such groups.

2.2.3 Voter Bribery (B3)

The third and final method at the disposal of The Lobby isvoter bribery. We can see from theP
matrix that each row represents what an individual voter thinks about all the issues on the docket.
In this method of bribery, The Lobby picks a voter and then pays to edit the entire row at once with
the funds being equally distributed over all the issues. So,for d dollars a fraction ofd/n is spent on
each issue, which moves accordingly. The cost of moving the voter is generated using theCP matrix
as before. This method of bribery is analogous to “buying” orpushing a single politician or voter.
The Lobby seeks to donate so much money to an individual voterthat he or she has no choice but
to move his or her votes toward The Lobby’s agenda.

2.3 Evaluation Criteria

Defining criteria for how an issue is won is the next importantstep in formalizing our models. Here
we define two methods that one could use to evaluate the eventual outcome of a vote. Since we
are focusing on problems that are probabilistic in nature, it is important to note that no evaluation
criteria will guarantee a win. The criteria below yield different outcomes depending on the model
and problem instance.

2.3.1 Strict Majority (C1)

For each issue, a strict majority of the individual voters have probability at least some threshold,
t, of voting according to the agenda. In our running example (see Example 1), witht = 50%, the
result of the votes would be~X = (0,0,0), because none of the issues has a strict majority of voters
with above 50% likelihood of voting according to the agenda.

2.3.2 Average Majority (C2)

For each issue,r j , of a given probability matrixP, we define:p j = (∑m
i=1 pi, j)/m. We can now evaluate

the vote to say thatr j is accepted if and only ifp j > t wheret is some threshold. This would, in our
running example, witht = 50%, give us a result vector of~X = (1,0,0).

6



2.4 Issue Weighting

Our modification to the model will bring in the concept of issue weighting. It is reasonable to
surmise that certain issues will be of more importance to TheLobby than others. For this reason we
will allow The Lobby to specify higher weights to the issues that they deem more important. These
weights will be defined for each issue.

We will specify these weights as a vector~W ∈ Zn with sizen equal to the total number of issues
in our problem instance. The higher the weight, the more important that particular issue is to The
Lobby. Along with the weights for each issue we are also givenan objective valueO∈ Z+ which is
the minimum weight The Lobby wants to see passed. Since this is a partial ordering, it is possible
for The Lobby to have an ordering such as:w1 = w2 = · · · = wn. If this is the case, we see that we
are left with an instance of Bi -C j -PLP.

We now introduce the six probabilistic lobbying problems with issue weighting. Fori ∈ {1,2,3}
and j ∈ {1,2}, we define:

Name: Bi -C j -PROBABILISTIC LOBBYING PROBLEM WITH ISSUE WEIGHTING (Bi -C j -PLP-
WIW, for short).

Given: A probability matrixP∈ Qm×n
[0,1] with tableCP of price functions and a lobby target vector

~Z ∈ {0,1}n, a lobby weight vector~W ∈ Zn, an objective valueO∈ Z+, and a budgetB.

Question: Is there a way for The Lobby to influenceP (using bribery method Bi and evaluation
criterion Cj , without exceeding budgetB) such that the total weight of all issues for which
the result coincides with The Lobby’s target vector~Z is at leastO?

3 Complexity-Theoretic Notions

We assume the reader is familiar with standard notions of (classical) complexity theory, such as P,
NP, and NP-completeness. Since we analyze the problems stated in Section 2 not only in terms
of their classical complexity, but also with regard to theirparameterizedcomplexity, we provide
some basic notions here (see, e.g., Downey and Fellows [7] for more background). As we derive
our results in a rather specific fashion, we will employ the “Turing way” as proposed by Cesati [4].

A parameterized problemP is a subset ofΣ∗×N, whereΣ is a fixed alphabet andN is the set
of nonnegative integers. Each instance of the parameterized problemP is a pair(I ,k), where the
second componentk is called theparameter. The languageL(P) is the set of allYES instances of
P. The parameterized problemP is fixed-parameter tractableif there is an algorithm (realizable
by a deterministic Turing machine) that decides whether an input (I ,k) is a member ofL(P) in
time f (k)|I |c, wherec is a fixed constant andf is a function whose argumentk is independent of
the overall input length,|I |. The class of all fixed-parameter tractable problems is denoted by FPT.

TheO∗(·) notation has by now become standard in exact algorithms. It neglects not only con-
stants (as the more familiarO(·)-notation does) but also polynomial factors in the functionesti-
mates. Thus, a problem is in FPT if and only if an instance (with parameterk) can be solved in time
O∗( f (k)) for some computable functionf .
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There is also a theory of parameterized hardness, most notably the W[t] hierarchy, which com-
plements fixed-parameter tractability: FPT= W[0] ⊆ W[1] ⊆ W[2] ⊆ ·· ·. It is commonly believed
that this hierarchy is strict. Since only the second level, W[2], will be of interest to us in this paper,
we will define only this class below.

A parameterized reductionis a functionr that, for some polynomialp and some functiong, is
computable in timeO(g(k)p(|I |)) and maps an instance(I ,k) of P onto an instancer(I ,k) = (I ′,k′)
of P ′ such that(I ,k) is aYES instance ofP if and only if (I ′,k′) is aYES instance ofP ′ and
k′ ≤ g(k). We then say thatP reduces toP ′.

W[2] can be characterized by the following problem on Turing machines:

Name: SHORT NONDETERMINISTIC TURING MACHINE COMPUTATION (SMNTMC, for short).

Given: A multi-tape nondeterministic Turing machineM (with two-way infinite tapes) and an input
stringx (bothM andx are given in some standard encoding).

Parameter: A positive integerk.

Question: Is there an accepting computation ofM on inputx that reaches a final accepting state in
at mostk steps?

More specifically, a parameterized problemP is in W[2] if and only if it can be reduced to
SMNTMC via a parameterized reduction, see Cesati [4]. This can be accomplished by giving an
appropriate multi-tape nondeterministic Turing machine for solvingP. Hardness can be shown by
giving a parameterized reduction in the opposite direction, from SMNTMC toP.

The complexity of a classical problem depends on the chosen parameterization. For problems
that involve a budgetB∈N (and hence can be viewed as minimization problems), the mostobvious
parameterization would be the given budget boundB. In this sense, we state parameterized results
in this paper. (For other applications of fixed-parameter tractability and parameterized complexity
to problems from computational social choice, see, e.g., [17].)

4 Classical Complexity Results

We now provide a formal complexity analysis of the probabilistic lobbying problems for all combi-
nations of evaluation criteria and bribery methods.

Table 1 summarizes our results for Bi -C j -PLP, i ∈ {1,2,3} and j ∈ {1,2}. Some of these
results are known from previous work by Christian et al. [5],as will be mentioned below. In this
sense, our results generalize the results of [5] by extending the model to probabilistic settings.

4.1 Microbribery

Theorem 2 B1-C1-PLP is in P.

Proof. The aim is to win all referenda. Per referendumr and voterv, we can compute in poly-
nomial time the amountb(r,v) The Lobby has to spend to turn the favor ofv in the direction of

8



Bribery Evaluation Criterion
Criterion C1 C2

B1 P P
B2 P P
B3 W[2]-complete W[2]-complete

Table 1: Complexity results for Bi -C j -PLP

The Lobby (beyond the given thresholdt). In particular, setb(r,v) = 0 if voter v would already
vote according to the agenda of The Lobby. For each issuer, sort{b(r,v) | 1 ≤ v ≤ m} increas-
ingly, yielding the sequenceb1(r), . . . ,bn(r). To win referendumr, The Lobby must spend at least
B(r) = ∑i≤(m+1)/2bi(r) dollars. Hence, all referenda can be won if and only if∑n

r=1B(r) is at most
the given bribery budgetB. ❑

The complexity of microbribery with evaluation criterion C2 is somewhat harder to deter-
mine. We use the following auxiliary problem. Here, aschedule Sof q jobs (on a single ma-
chine) is a sequenceJi(1), . . . ,Ji(q) such thatJi(r) = Ji(s) implies r = s. The cost of schedule Sis
c(S) = ∑q

k=1 c(Ji(k)). S is said torespect the precedence constraintsof graphG if for every (path)-
componentPi = Ji,1, . . . ,Ji,p(i) and for eachk with 2≤ k≤ p(i), we have: IfJi,k occurs in the schedule
S thenJi,k−1 occurs inSbeforeJi,k.

Name: PATH SCHEDULE

Given: A setV = {J1, . . . ,Jn} of jobs, a directed graphG= (V,A) consisting of pairwise disjoint
pathsP1, . . . ,Pz, two numbersC,q∈N, and a cost functionc : V → N.

Question: Can we find a scheduleJi(1), . . . ,Ji(q) of q jobs of cost at mostC respecting the prece-
dence constraints ofG?

We first show that PATH SCHEDULE is in P. Then we show how to reduce B1-C2-PLP to PATH

SCHEDULE, which implies that B1-C2-PLP is in P as well.

Lemma 3 PATH SCHEDULE is in P.

Proof. The following dynamic programming approach finally calculatesT[{P1, . . . ,Pz},q], which
gives the minimum cost to solve the problem. We build up a table T[{P1, . . . ,Pℓ}, j] storing the
minimum cost of schedulingj jobs out of the jobs contained in the pathsP1, . . . ,Pℓ. Let Pi =
Ji,1, . . . ,Ji,p(i). Clearly, fork ≤ p(1), T[{P1},k] = ∑k

s=1J1,s. For k > p(1), setT[{P1},k] = ∞. If
ℓ > 1, T[{P1, . . . ,Pℓ}, j] equals min0≤k≤min{ j,p(ℓ)}T[{P1, . . . ,Pℓ−1}, j − k] +∑k

s=1c(Jℓ,s). Consider
each possible scheduling of the firstk jobs ofPℓ. For the remainingj −k jobs, look up a solution in
the table. Notice that we can re-order each scheduleSso that all jobs from one path contiguously
appear inS, without violating the precedence constraints by this re-ordering, nor changing the cost
of the schedule. Hence,T[{P1, . . . ,Pz},q] gives the minimum schedule cost. The number of entries
in the table isz·q, and computing each entryT[{P1, . . . ,Pℓ}, ·] is linear inp(ℓ) (for each 1≤ ℓ≤ z),
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which leads to a run time of the dynamic programming algorithm that is polynomially bounded by
the input size. ❑

Theorem 4 B1-C2-PLP is in P.

Proof. Let (P,CP,~Z,B) be a given B1-C2-PLP instance, whereP∈ Qm×n
[0,1] , CP is a table of price

functions,~Z ∈ {0,1}n is The Lobby’s target vector, andB is its budget. Forj ∈ {1,2, . . . ,n}, let d j

be the minimum cost for The Lobby to bring referendumr j into line with the jth entry of its target
vector~Z. If ∑n

j=1d j ≤ B then The Lobby can achieve its goal that the votes on all issues equal~Z. We
now focus on the first task. For everyr j , create an equivalent PATH SCHEDULING instance. First,
compute forr j the minimum numberb j of bribery steps needed to achieve The Lobby’s goal onr j .
That is, choose the smallestb j ∈N such thatp j +bj/(k+1)m> t. Now, for every votervi , derive a path
Pi from the price functionci, j . Let s, 0≤ s≤ k+1, be minimum with the propertyci, j(s) ∈ N>0.
Then create a pathPi = ps, . . . , pk+1, whereph represents thehth entry ofci, j (viewed as a vector).
Assign the cost ˆc(ph) = ci, j (h)−ci, j (h−1) to ph. Observe that ˆc(ph) represents the cost of raising
the probability of voting “yes” from(h−1)/(k+1) to h/(k+1). In order to do so, we must have reached
an acceptance probability of(h−1)/(k+1) first. Now, let the number of jobs to be scheduled beb j .
Note that one can takeb j bribery steps at the cost ofd j dollars if and only if one can scheduleb j

jobs with a cost ofd j . Hence, we can decide whether or not(P,CP,~Z,B) is in B1-C2-PLP by using
the dynamic program given in the proof of Lemma 3. ❑

Exact Version of Microbribery: The exact variants of probabilistic lobbying via microbribery,
denoted by EXACT-B1-C j -PLP with j ∈ {1,2}, ask whether The Lobby can achieve its goal via
microbribery (for the given evaluation criterion) by spending exactlyB dollars. Thus, in these
variants The Lobby is constrained to spending a total amountof exactlyB dollars (and no less than
that).

Theorem 5 For j ∈ {1,2}, EXACT-B1-C j -PLP is NP-complete.

Proof. We focus on EXACT-B1-C1-PLP and note that the reduction can be carried over straight-
forwardly to the case of EXACT-B1-C2-PLP.

To see membership in NP, observe that an instanceI of EXACT-B1-C j -PLP can be transformed
into another instanceI ′ of EXACT-B1-C j -PLP after guessing which issue and which voter should
be bribed by an amount of money specified by the first non-zero entry in the corresponding row of
the cost matrixCP and modifyingCP accordingly. After repeated guesses, we either arrive at an
amount of left-over money that cannot be used for any briberyanymore (since it is either too small
or possibly no money can be spent at all, since all issues and voters have been “completely bribed”);
in this case, the nondeterministic procedure simply stops.Or, all money was (exactly) spent. In
that case, it is checked if the evaluation criterion was met.If it is met, the algorithm gives and
affirmative answer; otherwise, it rejects. Hence, the nondeterministic procedure will either succeed
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Bribery Evaluation Criterion
Criterion C1 C2

B1 NP-compl., FPT NP-compl., FPT
B2 NP-compl., FPT NP-compl., FPT
B3 W[2]-complete W[2]-complete

Table 2: Complexity results for Bi -C j -PLP-WIW

in one branch, yielding an affirmative answer, or there is no solution, and no affirmative answer will
be produced.

To show NP-hardness of EXACT-B1-C1-PLP, we provide a reduction from SUBSET SUM (see,
e.g., Garey and Johnson [15]): Givena1, . . . ,an,S∈ N+, does there exist a subsetI ⊆ {1, . . . ,n}
such that∑i∈I ai = S? For such a SUBSET SUM instance, create an EXACT-B1-C1-PLP instance
with only one referendumr1 and with votersv1, . . . ,v2n. Let k = 0. SetPi1 = 1 andci1(1) = 0 for
1≤ i ≤ n, and setPi1 = 0, ci1(0) = 0, ci1(1) = ai−n for n+1≤ i ≤ 2n. LetB=Sandt = 0.5. Observe
that we have to influence at least one of the voters not in accordance withr1. Thus we can turnr1

to The Lobby’s favor by spending exactlyB dollars on a set of votersvi1, . . . ,viℓ (n+1≤ i j ≤ 2n) if
and only if there is a subsetI ⊆ {1, . . . ,n}, |I |= ℓ, such that∑i∈I ai = S. ❑

4.2 Issue Bribery

Theorem 6 B2-C1-PLPandB2-C2-PLPare inP.

Proof. We prove that B2-C1-PLP is in P; the proof for B2-C2-PLP is analogous. Observe that
Bi -C j -PLP (just like the problem OL defined in Section 5) contains avector that represents the
issues that The Lobby would like to see passed. In Theorem 8 below (see Section 5), the constraint
from OL, b, is expressed over the number ofvoters that need to be influenced. In B2-C1-PLP,
however, we are required to influence a certain number of issues. Thus, in order to determine
a win we construct acost differencematrix representing how much it would cost The Lobby to
win each issue (since all voters receive the same amount of money, this can be determined in time
polynomial in the number of voters and issues). Using this cost difference matrix, we greedily select
the cheapest issues to influence in order to achieve The Lobby’s agenda. ❑

4.3 Probabilistic Lobbying with Issue Weighting

Table 2 summarizes our results for Bi -C j -PLP-WIW, i ∈{1,2,3} and j ∈{1,2}. The most interest-
ing observation is that introducing issue weights raises the complexity from P to NP-completeness
for all cases of microbribery and issue bribery (though it remains the same for voter bribery).
Nonetheless, we show later as Theorem 10 that these NP-complete problems are fixed-parameter
tractable.

Theorem 7 For i, j ∈ {1,2}, Bi -C j -PLP-WIW is NP-complete.
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Proof. Membership in NP is easy to observe for each problem Bi -C j -PLP-WIW, wherei, j ∈
{1,2}.

To prove that B1-C1-PLP-WIW is NP-hard, we give a reduction from KNAPSACK to
B1-C1-PLP-WIW. In KNAPSACK, we are given a set of objectsU = {o1, . . . ,on} with weights
w : U → N and profits p : U → N, and W,P ∈ N. The question is whether there is a sub-
set I ⊆ {1, . . . ,n} such that∑i∈I w(oi) ≤ W and ∑i∈I p(oi) ≥ P. Given a KNAPSACK instance
(U,w, p,W,P), create a B1-C1-PLP-WIW instance withk = 0 and only one voter,v1, where for
each issue,v1’s acceptance probability is either zero or one. For each objecto j ∈U , create an issue
r j such that the acceptance probability ofv1 is zero. Let the cost of raising this probability onr j

bec1, j = w(o j) and let the weight of issuer j bew j = p(o j). Let The Lobby’s budget beW and its
objective value beO= P. By construction, there is a subsetI ⊆ {1, . . . ,n} with ∑i∈I w(oi)≤W and
∑i∈I p(oi)≥ P if and only if there is a subsetI ⊆ {1, . . . ,n} with ∑i∈I c1,i ≤W and∑i∈I wi ≥ O.

As the reduction introduces only one voter, there is no difference between the bribery methods
B1 and B2, and no difference either between the evaluation criteria C1 and C2. Hence, the above
reduction works for all four other problems. ❑

5 Parameterized Complexity Results

5.1 Voter Bribery

Christian et al. [5] proved that the following problem is W[2]-complete. We state this problem here
as is common in parameterized complexity:

Name: OPTIMAL LOBBYING (OL, for short).

Given: An m×n matrix E and a 0/1 vector~Z of length n. Each row ofE represents a voter.
Each column represents an issue in the election. The vector~Z represents The Lobby’s target
outcome.

Parameter: A positive integerk (representing the number of voters to be influenced).

Question: Is there a choice ofk rows of the matrix (i.e., ofk voters) that can be changed such that
in each column of the resulting matrix (i.e., for each issue)a majority vote yields the outcome
targeted by The Lobby?

Christian et al. [5] proved this problem to be W[2]-complete by a reduction fromk-
DOMINATING SET to OL (showing the lower bound) and from OL to INDEPENDENT-k-
DOMINATING SET (showing the upper bound). To employ the W[2]-hardness result of Christian
et al. [5], we show that OL is a special case of B3-C1-PLP and thus (parameterized) polynomial-
time reduces to B3-C1-PLP. Analogous arguments apply to B3-C2-PLP.

Theorem 8 For j ∈ {1,2}, B3-C j -PLP (parameterized by the budget) isW[2]-hard.
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Proof. We first prove that B3-C1-PLP is W[2]-hard by providing a parameterized reduction from
OL to B3-C1-PLP, where the parameter (number of voters to be influenced by The Lobby) is the
same in both problems. We are given an instance(E,~Z,b) of OL, whereE is am×n 0/1 matrix,
b is the number of votes to be edited, and~Z is the agenda for The Lobby. We may assume without
loss of generality that~Z = 1n.

We construct an instance of B3-C1-PLP consisting of the given matrixP= E (a “degenerated”
probability matrix with only the probabilities 0 and 1), a corresponding cost matrixCP, a target
vector~Z = 1n, and a budgetB. CP has two columns (i.e., we havek= 0, since the problem instance
is deterministic, see Section 2.1), one column for probability 0 and one for probability 1. All entries
of CP are set to unit cost.

The cost of increasing any value inP is n, since donations are distributed evenly across issues
for a given voter. We want to know whether there is a set of bribes of cost at mostb·n= B such that
The Lobby’s agenda passes. This holds if and only if there areb voters that can be bribed so that
they vote uniformly according to The Lobby’s agenda and thatis sufficient to pass all the issues.
Thus, the given instance(E,~Z,b) is in OL if and only if the constructed instance(P,CP,~Z,B) is in
B3-C1-PLP, which shows that OL is a polynomial-time recognizablespecial case of B3-C1-PLP,
and thus B3-C1-PLP is W[2]-hard.

Note that for the construction above it doesn’t matter whether we use the strict-majority criterion
(C1) or the average-majority criterion (C2). Since the entries ofP are 0 or 1, we havep j > 0.5 if
and only if we have a strict majority of ones in thejth column. Thus, B3-C2-PLP is W[2]-hard too.
❑

Theorem 9 For j ∈ {1,2}, B3-C j -PLP (parameterized by the budget) isW[2]-complete.

Proof. Again, we give only the details for the case of B3-C1-PLP; the proof for B3-C2-PLP is
analogous. W[2]-hardness has been shown in Theorem 8. To show membership in W[2], we reduce
B3-C1-PLP to SMNTMC, which was defined in Section 3. To this end, it suffices to describe how
a nondeterministic multi-tape Turing machine can solve such a lobbying problem.

Consider an instance of B3-C1-PLP: a probability matrixP ∈ Qm×n
[0,1] with a tableCP of price

functions and a budgetB. Again, we may assume that the target vector is~Z = 1n. Moreover, we
assume that the target thresholdt is fixed. We can identifyt with a certain step level for the price
functions.

The reducing machine works as follows. FromP,CP, andt, the machine extracts the information
Hi, j(d), whereHi, j(d) is true if eitherpi, j ≥ t or ci, j(t) ≤ d/n (since according to this scenario, the
bribery money is distributed among all issues). Note thatHi, j(d) captures whether payingd dollars
to votervi helps to raise the acceptance probability ofvi on referendumr j above the thresholdt.
Moreover, for each referendumr j , we compute the minimum number of voters that need to switch
their opinion so that majority is reached for that specific referendum; lets( j) denote this threshold
for r j . Since we assume payments in dollar units, a referendum withs( j)> B yields aNO instance.
We can therefore replace any values( j)> B by the valueB+1.

The nondeterministic multi-tape Turing machineM we describe next has, in particular, access
to Hi, j and tos( j). M hasn+1 working tapesTj , 0≤ j ≤ n, all except one of which correspond to
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issuesr j , 1≤ j ≤ n. We will use the set of voters,V = {v1, . . . ,vm}, as alphabet. The (formal) input
tape ofM is ignored.

M starts by writings( j) symbols # onto tapej for each j, 1≤ j ≤ n. By using parallel writing
steps, this needs at mostB+1 steps, sinces( j) ≤ B+1 as argued above.

Second, for eachi ∈ {1, . . . ,m}, M writeski symbolsvi from the alphabetV on the zeroth tape,
T0, such that∑m

i=1ki ≤ B. This is the nondeterministic guessing phase where the amount of bribery
money spent on each voter is determined. Notice that no more thanB voters can be bribed.

In the third phase, for each votervi that will be bribed,M counts the corresponding amountki

of bribery money and determines (by usingHi, j ) if it is enough to changevi ’s opinion regarding the
jth issue. If so, the head ofM on tapej moves one step to the left. Again, all these head moves are
performed in parallel. Hence, the string on the zeroth tape is being processed in at mostB (parallel)
steps.

Finally, it is checked if the left border is reached (again) for all tapesTj , j > 0. This is the case
if and only if the guessed bribery was successful. ❑

5.2 Probabilistic Lobbying with Issue Weighting

Recall from Theorem 7 that Bi -C j -PLP-WIW, wherei, j ∈ {1,2}, is NP-hard. We now show that
each of these problems is fixed-parameter tractable when parameterized by the budget.

Theorem 10 For i, j ∈ {1,2}, Bi -C j -PLP-WIW (parameterized by the budget) is inFPT.

Proof. Since the four unweighted variants are in P, we can compute the number of dollars
to be spent to win referendumr j in polynomial time in each case. Now re-interpret the given
Bi -C j -PLP-WIW instance as a KNAPSACK instance: Every issuer j is an objecto j with weightd j

and profitp j , both set to be the same as weightw j of issuer j . Let the KNAPSACK bound be the
total numberB of dollars allowed to be spent. Now use the pseudo-polynomial algorithm to solve
KNAPSACK in timeO(n2|B|), where|B| denotes the length of the encoding ofB. ❑

Voter bribery with issue weighting remains W[2]-complete for both evaluation criteria.

Theorem 11 For j ∈ {1,2}, B3-C j -PLP-WIW (parameterized by the budget) isW[2]-complete.

Proof. By Theorem 8, B3-C1-PLP is W[2]-hard. Since B3-C1-PLP is a special case of
B3-C1-PLP-WIW, where all the issues have unit weight, B3-C1-PLP-WIW is W[2]-hard as well.
An analogous argument shows that B3-C2-PLP-WIW is W[2]-hard, too.

Membership in W[2] is a bit more tricky than in the unweighted case from Theorem 9. In the
following, we indicate only the necessary modifications:

• The reducing machine calculates the differenceO′ between the target weight and the sum of
the weights of the referenda that are already won.

• For each referendum that is not already won, the reducing machine introduces a special letter
r i to be used on the zeroth tape.

14



• The Turing machine that has been built at the very beginning also guesses at mostB referenda
that (additionally) should be won. (Note that influencing any issue costs at least one dollar.)
Then, the Turing machine will spendO( f (B)) time to calculate if winning those guessed ref-
erendar i1, . . . , r ib, b≤ B, would be sufficient to get beyond the threshold. Only if sufficiency
is guaranteed, the Turing machine continues working.

• The Turing machine will then continue to work as described inthe proof of Theorem 9.

• At the very end, the Turing machine will verify in at mostB steps if all referenda guessed in
the very beginning have been won.

Note that it is quite tempting to try to avoid the weight calculations within the Turing machine,
letting the reducing machine do this job. However, this seems to necessitate coding the winning
situations in the state set of the Turing machine, leading toa possible exponential size of this Turing
machine (measured in the overall input size of the voting scenario).

W[2]-completeness of B3-C2-PLP-WIW can be proven by an analogous argument. ❑

6 Approximability

As seen in Tables 1 and 2, many problem variants of probabilistic lobbying are NP-complete. Hence,
it is interesting to study them not only from the viewpoint ofparameterized complexity, but also
from the viewpoint of approximability.

The budget constraint on the bribery problems studied so fargives rise to natural minimization
problems: Try to minimize the amount spent on bribing. For clarity, let us denote these minimization
problems by prefixing the problem name with MIN, leading to, e.g., MIN-OL.

6.1 Voter Bribery is Hard to Approximate

The already mentioned reduction of Christian et al. [5] (that proved that OL is W[2]-hard) is
parameter-preserving (regarding the budget). It further has the property that a possible solution
found in the OL instance can be re-interpreted as a solution to the DOMININATING SET instance
the reduction started with, and the OL solution and the DOMININATING SET solution are of the
same size. This in particular means that inapproximabilityresults for DOMININATING SET trans-
fer to inapproximability results for OL. Similar observations are true for the interrelation of SET

COVER and DOMINATING SET, as well as for OL and B3-C1-PLP-WIW (or B3-C2-PLP-WIW).
The known inapproximability results [3,20] for SET COVER hence give the following result (see

also Footnote 4 in [22]).

Theorem 12 There is a constant c> 0 such thatMIN -OL is not approximable within factor c·
log(n) unlessNP⊂ DTIME(nlog log(n)), where n denotes the number of issues.

Since OL can be viewed as a special case of both B3-Ci -PLP and B3-Ci -PLP-WIW for i ∈
{1,2}, we have the following corollary.
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Corollary 13 For i ∈ {1,2}, there is a constant ci > 0 such that bothMIN -B3-Ci -PLPandMIN -
B3-Ci -PLP-WIW are not approximable within factor ci · log(n) unlessNP⊂ DTIME(nlog log(n)),
where n denotes the number of issues.

Conversely, a logarithmic-factor approximation can be given for the minimum-budget versions
of all our problems, as we will show now. We first discuss the relation to the well-known SET

COVER problem, sketching a tempting, yet flawed reduction and pointing out its pitfalls. Avoiding
these pitfalls, we then give an approximation algorithm forMIN-B 3-C2-PLP. Moreover, we define
the notion of cover number, which allows to state inapproximability results for MIN-B3-C2-PLP.
Similar results hold for MIN-B3-C1-PLP, the constructions being sketched at the end of the section.

Voter bribery problems are closely related to set cover problems, in particular in the average-
majority scenario, so that we should be able to carry over approximability ideas from that area. The
intuitive translation of a MIN-B3-C2-PLP instance into a SET COVER instance is as follows: The
universe of the derived SET COVER instance should be the set of issues, and the sets (in the SET

COVER instance) are formed by considering the sets of issues that could be influenced (by changing
a voter’s opinion) through bribery of a specific voter. Namely, when we pay voterv a specific
amount of money, sayd dollars, he or she will investd/n dollars to each issue and possibly change
v’s opinion (or at least raisev’s acceptance probability to the “next level”). The weightsassociated
to the sets of issues correspond to the bribery costs that are(minimally) incurred to lift the issues in
the set to some “next level.” There are four differences to classical set covering problems:

1. We cannot neglect the voter who has been bribed, so different voters (with different bribing
costs) may be associated with the same set of issues.

2. The sets associated with one voter are not independent. For each voter, the sets of issues
that can be influenced by bribing that voter are linearly ordered by set inclusion. Moreover,
when bribing a specific voter, we have to first influence the “smaller sets” (which might
be expensive) before possibly influencing the “larger ones”; so, weights are attached to set
differences, rather than to sets.

3. A cover number c(r j) is associated with each issuer j , indicating by how many levels voters
must raise their acceptance probabilities in order to arrive at average majority forr j . The
cover numbers can be computed beforehand for a given instance. Then, we can also associate
cover numbers to sets of issues (by summation), which finallyleads to the cover number
N = ∑n

j=1c(r j ) of the whole instance.

4. The money paid “per issue” might not have been sufficient for influencing a certain issue up
to a certain level, but it is not “lost”; rather, it would makethe next bribery step cheaper, hence
(again) changing weights in the set cover interpretation.

To understand these connections better, let us have anotherlook at our running example (under
the voter bribery with average-majority evaluation), assuming an all-ones target vector. If we paid
30 dollars to voterv1, he or she would invest 10 dollars to each issue, which would raise his or her
acceptance probability for the second issue from .3 to .4; noother issue level is changed. Hence,
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this would correspond to a set containing onlyr2 with weight 30. Note that by this bribery, the
costs for raising the acceptance probability of voterv1 to the next level would be lowered for the
other two issues. For example, spending 15 more dollars onv1 would raiser3 from .5 to .6, since
all in all 45 dollars have been spent on voterv1, which means 15 dollars per issue. If the threshold
is 60% in that example, then the first issue is already accepted (as desired by The Lobby), but the
second issue has gone up from .5 to .6 on average, which means that we have to raise either the
acceptance probability of one voter by two levels (for example, by paying 210 dollars to voterv1),
or we have to raise the acceptance probability of each voter by one level (by paying 30 dollars to
voterv1 and another 30 dollars to voterv2). This can be expressed by saying that the first issue has
a cover number of zero, and the second has a cover number of two.

When we interpret an OL instance as a B3-C2-PLP instance, the cover number of that resulting
instance equals the number of issues, assuming that the votes for all issues need amendment. Thus
we have the following corollary:

Corollary 14 There is a constant c> 0 such thatMIN -B3-C2-PLP is not approximable within
factor c· log(N) unlessNP⊂DTIME(Nloglog(N)), where N is the cover number of the given instance.
A fortiori, the same statement holds forMIN -B3-C2-PLP-WIW.

Let H denote the harmonic sum function, i.e.,H(r) = ∑r
i=1

1/i. It is well known thatH(r) =
O(log(r)). More precisely, it is known that

⌊ln r⌋ ≤ H(r)≤ ⌊ln r⌋+1.

We now show the following theorem.

Theorem 15 MIN -B3-C2-PLP can be approximated within a factor ofln(N)+1, where N is the
cover number of the given instance.

Proof. Consider the following greedy algorithm (given thresholdt and assuming (w.l.o.g.) the
target vector~1); notice that the cover numbers (per referendum) can be computed from the cost
matrixCP and the thresholdt before calling the algorithm the very first time:

Greedy Voter Bribery (GVB):
Input: A probability matrixP ∈ Qm×n

[0,1] (implicitly specifying a setV of m voters and a setR of n

referenda), a cost matrixCP, andn cover numbersc(r1), . . . ,c(rn) ∈ N.

1. Delete referenda that are already won (indicated byc(r j ) = 0), and modifyR andCP accord-
ingly.

2. If R= /0, STOP.

3. For each voterv, compute the cheapest amount of money,dv, that allows to raise any level in
CP. Let nv be the number of referenda whose levels are raised when spending dv dollars on
voterv.

4. Bribe voterv such thatdv/nv is minimum.
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5. Modify CP by subtractingdv/n from each amount listed for voterv.

6. Modify c by subtracting one fromc(r) for those referendar ∈ R influenced by this bribery
action.

7. Recurse.

Observe that our greedy algorithm influences voters only viaraising their acceptance probabil-
ities by only one level, so that the amountdv possibly spent on voterv in Step 3 of the algorithm
actually correponds to a set of referenda; we do not have to consider multiplicities of issues (raised
over several levels) here.

Let S1, . . . ,Sℓ be the sequence of sets of referenda picked by the greedy bribery algorithm, along
with the sequencev1, . . . ,vℓ of voters and the sequenced1, . . . ,dℓ of bribery dollars spent this way.
Let R1 = R, . . . ,Rℓ,Rℓ+1 = /0 be the corresponding sequence of sets of referenda, with the accord-
ingly modified cover numbersci . Let j(r,k) denote the index of the set in the sequence influencing
referendumr thekth time withk≤ c(r), i.e.,r ∈ Sj(r,k) and|{i < j(r) | r ∈ Si}|= k−1. To coverr
thekth time, we have to payχ(r,k) = dj(r,k)/|Sj(r,k) | dollars. The greedy algorithm will incur a cost of

χgreedy= ∑r∈R∑c(r)
k=1 χ(r,k) in total.

An alternative view on the greedy algorithm is from the perspective of the referenda: By running
the algorithm, we implicitly define a sequencer1, . . . , rN of referenda, whereN= c(R)=∑r∈Rc(r) is
the cover number of the original instance, such thatS1 = {r1, . . . , r|S1|}, S2 = {r|S1|+1, . . . , r|S1|+|S2|},
etc. Ties (how to list elements withinSi) are broken arbitrarily. This (implicitly) defines two func-
tionsL,R : {1, . . . , ℓ} → {1, . . . ,N} such thatSi = {rL(i) · · · rR(i)}. Slightly abusing notation, we can
associate a costχ ′(r i) to each element in the sequence (keeping in mind the multiplicities of cover-
ing implied by the sequence), so thatχgreedy= ∑N

i=1 χ ′(r i). Notice thatdi = ∑L(i)≤r≤R(i) χ ′(xr).
Considerr j with L(i) ≤ j ≤ R(i). The current referenda setRi has cover numberN−L(i)+1,

i.e., of at leastN− j +1. Letχopt be the cost of an optimum bribery strategyC ∗ of the original uni-
verse. Of course, this also yields a cover of the referenda set Ri with cost at mostχopt. The average
cost per element (taking into account multiplicities as given by the cover numbers) isχopt/c(Ri). (So,
whether or not some new levels are obtained through bribery does not really matter here, as long as
the threshold is not exceeded.)

C ∗ can be described by a sequence of sets of referendaC1, . . . ,Cq , with corresponding voters
z1, . . . ,zq and dollarsd∗

1, . . . ,d
∗
q spent. Hence,χopt = ∑q

κ=1d∗
κ . To each bribery step we associate

the cost factord∗
κ/|Cκ |, for each issuer contained inCκ . C ∗ could be also viewed as a bribery strategy

for Ri. By pigeon hole, there is a referendumr in Ri (to be influenced thekth time) with cost factor
at mostd∗

κ/|Cκ∩Ri | ≤ χopt/c(Ri ), whereκ is the index such thatCκ containsr for the kth time inC ∗

(usually, the cost would be smaller, since part of the bribery has already been paid before). Since
(Si ,vi) was picked to minimizedi/|Si |, we finddi/|Si |≤ d∗

κ/|Cκ∩Ri | ≤ χopt/c(Ri).
We conclude that

χ ′(r j)≤ χopt/c(Ri) = χopt/N−L(i)+1 ≤ χopt/N− j+1.

Hence,χgreedy= ∑N
j=1 χ ′(r j)≤ ∑N

j=1
χopt/N− j+1 = H(N)χopt≤ (ln(N)+1)χopt. ❑
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In the strict-majority scenario, cover numbers would have adifferent meaning—we thus call
them strict cover numbers: For each referendum, the corresponding strict cover number tells in
advance how many voters have to change their opinions (bringing them individually over the given
thresholdt) to accept this referendum. Again, the strict cover number of a problem instance is the
sum of the strict cover numbers of all given referenda.

The corresponding greedy algorithm would therefore chooseto influence votervi (with di dol-
lars) in theith loop so thatvi changes his or her opinion on some referendumr j (possibly, there is a
whole setρ j of referenda influenced this way), so thatdi/|ρ j | is minimized.

We can now read the approximation estimate proof given for the average-majority scenario
nearly literally as before, by re-interpreting the formulation “influencing referendumr” meaning
now a complete change of opinion for a certain voter (not justgaining one level somehow). This
establishes the following result.

Theorem 16 MIN -B3-C1-PLP can be approximated within a factor ofln(N)+1, where N is the
strict cover number of the given instance.

Note that this result is in some sense stronger than Theorem 15 (which refers to the average-
majority scenario), since the cover number of an instance could be larger than the strict cover num-
ber.

This approximation result is complemented by a corresponding hardness result.

Corollary 17 There is a constant c> 0 such thatMIN -B3-C1-PLP is not approximable within
factor c· log(N) unlessNP⊂ DTIME(Nloglog(N)), where N is the strict cover number of the given
instance. A fortiori, the same statement holds forMIN -B3-C1-PLP-WIW.

Unfortunately, those greedy algorithms do not (immediately) transfer to the case when issue
weights are allowed. These weights might also influence the quality of approximation, but a sim-
plistic greedy algorithm might result in covering the “wrong” arguments. Also, the proof of the
approximation factor given above will not carry over, sincewe need as one of the proof’s basic in-
gredients that an optimum solution can be interpreted as a partial one at some point. Those problems
tend to have a different flavor.

6.2 Polynomial-Time Approximation Schemes

Those problems for which we obtained FPT results in the case of issue weights actually enjoy a
polynomial-time approximation scheme (PTAS). The proof ofTheorem 10 can be easily turned into
a PTAS using standard techniques, since that result was obtained by transferring pseudo-polynomial
time algorithms.

Theorem 18 For i, j ∈ {1,2}, MIN -Bi -C j -PLP-WIW admits a PTAS.

The exact version of microbribery also admitted an FPT-result, but this cannot be interpreted as
an approximation result, since the entity that should be minimized has to be hit exactly(otherwise,
we have polynomial time).
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7 Conclusions

We have studied six lobbying scenarios in a probabilistic setting, both with and without issue
weights. Among the twelve problems studied, we identified those that can be solved in polynomial
time, those that are NP-complete yet fixed-parameter tractable, and those that are hard (namely,
W[2]-complete) in terms of their parameterized complexity withsuitable parameters. It would be
interesting to study these problems in different parameterizations. Finally, we investigated the ap-
proximability of hard probabilistic lobbying problems (without issue weights) and obtained both
approximation and inapproximability results. An interesting open question is whether one can find
logarithmic-factor approximations for voter bribery withissue weights.
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