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Abstract

We propose various models for lobbying in a probabilisticiemment, in which an actor
(called “The Lobby”) seeks to influence the voters’ prefeesof voting for or against multiple
issues when the voters’ preferences are represented is tdrpnobabilities. In particular, we
provide two evaluation criteria and three bribery methadfotmally describe these models,
and we consider the resulting forms of lobbying with and withissue weighting. We provide
a formal analysis for these problems of lobbying in a stotbanvironment, and determine
their classical and parameterized complexity dependirth®given bribery/evaluation criteria.
Specifically, we show that some of these problems can bedaiveolynomial time, some are
NP-complete but fixed-parameter tractable, and some &2g-&ymplete. Finally, we provide
(in)approximability results.

1 Introduction

In the American political system, laws are passed by elecfficials who are supposed to repre-
sent their constituency. Individual entities such as eftizor corporations are not supposed to have
undue influence in the wording or passage of a law. Howevey, #éne allowed to make contribu-
tions to representatives, and it is common to include arcatitin that the contribution carries an
expectation that the representative will vote a certain arag particular issue.
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Many factors can affect a representative’s vote on a pdatigesue. There are the represen-
tative’s personal beliefs about the issue, which presuynadelre part of the reason that the con-
stituency elected them. There are also the campaign cotitits, communications from con-
stituents, communications from potential donors, and dpeasentative’s own expectations of fur-
ther contributions and political support.

It is a complicated process to reason about. Earlier workidened the problem of meting out
contributions to representatives in order to pass a sewaf ta influence a set of votes. However,
the earlier computational complexity work on this problerada the assumption that a politician
who accepts a contribution will in fact—if the contributiomeets a given threshold—vote according
to the wishes of the donor.

It is said that “An honest politician is one who stays bouditf that does not take into account
the ongoing pressures from personal convictions and opgdsbbyists and donors. We consider
the problem of influencing a set of votes under the assumftiainwve can influence only thgrob-
ability that the politician votes as we desire.

There are several axes along which we complicate the picithe first is the notion of suffi-
ciency: What does it mean to say we have donated enough temaefithe vote? Does it mean that
the probability that a single vote will go our way is greateari some threshold? That the probabil-
ity that all the votes go our way is greater than that threkhale discuss these and other criteria in
the section on evaluation criteria.

How does one donate money to a campaign? In the United Shtedes dare several laws that
influence how, when, and how much a particular person or a@gaon can donate to a particu-
lar candidate. We examine ways in which money can be chahele the political process in
Sectior 3]

Lobbying has been studied formally by economists, compsteantists, and special interest
groups since at least 1983 [21] and as an extension to foramaégheory since 1944 [19]. Each
discipline has considered mostly disjoint aspects of tbegss while seeking to accomplish distinct
goals with their respective formal models. Economists liaxmalized models and studied them as
“economic games,” as defined by von Neumann and Morgensi8in This analysis is focused on
learning how these complex systems work and deducing olsimziegies for winning the competi-
tions [21],1,2]. This work has also focused on how to “rig” #evand how to optimally dispense the
funds among the various individuald [1]. Economists arergdted in finding effective and efficient
bribery schemes [1] as well as determining strategies feaices of two or more players/[1,21,
2]. Generally, they reduce the problem of finding an effectobbying strategy to one of finding a
winning strategy for the specific type of game. Economisiglaso formalized this problem for
bribery systems in both the United States|[21] and the Eanoénion [6].

In the emerging field of computational social choice, votargl preference aggregation are
studied from a computational perspective, with a partictdaus on the complexity of winner de-
termination, manipulation, procedural control, and bnjbim elections (see, e.g., the survéy|[14]
and the references cited therein), and also with respeobtaying in the context of direct democ-
racy where voters vote on multiple referenda. In particuldiristian et al.[[5] show that “Optimal

I\We stress that when we use the term “bribery” in this papés,riteant in the sense of lobbyird [5], not in the sense
Faliszewski et al[[9] define bribery (see also, elg. [1A1J.



Lobbying” (OL) is complete for the (parameterized) comjitiexlass W2]. The OL problem is
a deterministic and nonweighted version of the problemswieapresent in this paper. Erdélyi et
al. [8] extend “Optimal Lobbying” into “Optimal Weighted lbbying” (OWL) by allowing differ-
ent voters to have different prices. This in turn can be ssenspecial case of a “binary multi-unit
combinatorial reverse auction winner-determination fmotj’ see Sandholm et al. [22].

We extend the models of lobbying, and provide algorithmsaaralysis for these extended mod-
els in terms of classical and parameterized complexity. fDoiblems are still related to the reverse
auction winner-determination problem—in particular, eMtensions of the optimal lobbying prob-
lem allow the seller to express desire over the objects,¢husally changing the original problem
in both the economic and complexity-theoretic senses. dlisge is a result of the probabilistic
modeling of the seller’s reaction to the bribery. We alsosshovel computational and algorithmic
approaches to these new problems. In this way we add breadttiegpth to not only the models but
also the understanding of lobbying behavior.

2 Modelsfor Probabilistic L obbying

2.1 Initial Modd

We begin with a simplistic version of theRBBABILISTIC LOBBYING PROBLEM (PLP, for short),
in which voters start with initial probabilities of votingif an issue and are assigned known costs
for increasing their probabilities of voting according fbHe Lobby’s” agenda by each of a finite
set of increments.

The question, for this class of problems, is: Given the aliofggmation, along with an agenda
and a fixed budgeB, can The Lobby target its bribes in order to achieve its ag@nthe complexity
of the problem seems to hinge on the evaluation criteriormfloat it means to “win a vote” or
“achieve an agenda.” We discuss the possible interpretatd evaluation and bribery later in this
section. First, however, we will formalize the problem byinieg data objects needed to represent
the problem instancés.

Let Qfafl]” denote the set ahxn matrices ovef|o 5 (the rational numbers in the interval 1]).

We sayP < Q{gfl]” is a probability matrix (of sizenxn), where each entrp; ; of P gives the proba-
bility that voteryv; will vote “yes” for referendum (synonymously, for issug) The result of a vote
can be either a “yes” (represented by 1) or a “no” (represkhie0). Thus, we can represent the
result of any vote on all issues as AlOsectorX = (x1,%o, ..., %)), which is sometimes also denoted
as a string inf0,1}".

We now associate with each pai,r;) of voter/issue, a discrete price functior) for changing
vi's probability of voting “yes” for issue;. Intuitively, ¢; ; gives the cost for The Lobby of raising
or lowering (in discrete steps) thin voter's probability of voting “yes” on thgth issue. A formal
description is as follows.

Given the entrieg; j = a.j/b;; of a probability matrixP € Q;!', choose som& € N such that

. . : 01’ . .
k+ 1 is a common multiple of alt; ;, where 1<i <mand 1< j[ < n, and patrtition the probability

2A similar model was first discussed by Reingan{imi [21] in thetiomious case and we translate it here to the discrete
case. This will allow us to present algorithms for, and theplexity analysis of, the problem.



interval [0, 1] into k+ 1 steps of sizé/(k+1) eacl For eachi € {1,2,....m}andj € {1,2,...,n},
Gij:{0,Y/(k+1),2/(k+1),...,%/k+1),1} — Nis the(discrete) price function forp, i.e.,c (¢/(k+1)) is

the price for changing the probability of tith voter voting “yes” on thgth issue fromp; j to ¢/(k+1),
where 0< ¢ < k+ 1. Note that the domain af j consists ok + 2 elements of|q ;) including O,
pi,j, and 1. In particular, we requi@;(p; ;) =0, i.e., a cost of zero is associated with leaving the
initial probability of votery; voting on issue'j unchanged. Note th&t= 0 meansp; ; € {0,1},
i.e., in this case each voter either accepts or rejects asade with certainty and The Lobby can
only flip these resuld. The image ofc; ; consists ok + 2 nonnegative integers including 0, and
we require that, for any two elemerdsb in the domain ot j, if pjj <a<borp;j >a>b, then

G j(a) < ¢ j(b). This guarantees monotonicity on the prices.

We represent the list of price functions associated withabalbility matrix P as a tableCp
whosem- n rows give the price functions j and whosek+ 2 columns give the costs j (¢/(k+1)),
where 0< ¢ < k-+ 1. Note that we choose the sakéor eachc; j, so we have the same number of
columns in each row d@p. The entries o€p can be thought of as “price tags” that The Lobby must
pay in order to change the probabilities of voting.

The Lobby also has an integer-valued budBeind an “agenda,” which we will denote as a
vectorZ € {0,1}", wheren is the number of issues, containing the outcomes The Lobhyldvo
like to see on the corresponding issues. For simplicity, vy assume that The Lobby’s agenda
is all “yes” votes, so the target vector Z&= 1". This assumption can be made without loss of
generality, since if there is a zeroZhat positionj, we can flip this zero to one and also change the
corresponding probabilitigsy j, P2,j,- .., Pm,j in the jth column ofPto 1—pyj,1—p2j,...,1— Pm;
(see the evaluation criteria in Sect[on]2.3 for how to deteenthe result of voting on a referendum).

Example 1 We create a problem instance with9, m= 2 (number of voters), and# 3 (number
of issues). We will use this as a running example for the rieti® paper. In addition to the above
definitions for k, m, and n, we also give the following matdk P. (Note that this example is
normalized for an agenda af = 13, which is why The Lobby has no incentive for lowering the
acceptance probabilities, so those costs are omitted below

Our example consists of a probability matrix P:

L [[rafrafrs]
v1][0.8]0.3[05
V2 || 041 0.7 0.4

3There is some arbitrariness in this choickoOne might think of more flexible ways of partitionif@ 1]. We have
chosen this way for the sake of simplifying the represeotatbut we mention that all that matters is that for eaahd j,
the discrete price functioq j is defined on the valug; j, and is set to zero for this value.

4This is the special case of Optimal Lobbying.



and the corresponding cost matrixC

[c,; [0.0] 0.1] 0.2] 0.3] 0.4] 0.5] 0.6] 0.7] 0.8] 0.9] 1.0]

C11 ——|—|—|—-=|—-—]——|——| 0{100|140
Ci2||—|——|——| O] 10| 70/100|140|310|520|600
Ci3||——|——|——|——|——] 0| 15| 25| 70| 90(150
C1||——|——|——|——| O] 30| 40| 70/120|200(270
Co2||l—|——|—|——|——|——|——] 0] 10| 40| 90
C3||——|——|——|——]| 0] 70| 90|100|180|300(450

In Sectior 2.2, we describe three bribery methods, i.eegthpecific ways in which The Lobby
can influence the voters. These will be referred to asiB {1,2,3}. In addition to the three
bribery methods described in Sectlonl2.2, we also define tayswn which The Lobby can win a
set of votes. These evaluation criteria are defined in Segli® and will be referred to as;Cj €
{1,2}. They are important because votes counted in different wagsesult in different outcomes
depending on voting and evaluation systems (cf. MyersorVegioer [18]).

We now introduce the six basic problems that we will study. ifo{1,2,3} andj € {1,2}, we
define:

Name: B;-C; PROBABILISTIC LOBBYING PROBLEM (B;-C;-PLP, for short).

Given: A probability matrixP Faxl? with tableCp of price functions, a target vectdre {0,1}",
and a budgeB.

Question: Is there a way for The Lobby to influendé&(using bribery method Band evaluation
criterion G;, without exceeding budgé) such that the result of the votes on all issues equals
Z?

2.2 Bribery Methods

We begin by first formalizing the bribery methods by which Ttabby can influence votes on
issues. We will define three methods for donating this money.

221 Microbribery (B1)

The first method at the disposal of The Lobby is what we will oailcrobriberyﬁ We define mi-
crobribery to be the editing of individual elements of tAenatrix according to the costs in ti@p
matrix. Thus The Lobby picks not only which voter to influerizé also which issue to influence
for that voter. This bribery method allows the most flexibérsion of bribery, and models private
donations made to candidates in support of specific issues.

5Although our notion was inspired by theirs, we stress thahéuld not be confused with the term “microbribery”
used by Faliszewski et al. [[L0JL3]11] in the different cahtd bribing “irrational” voters in Llull/Copeland elecins via
flipping single entries in their preference tables.



2.2.2 lIssueBribery (B>y)

The second method at the disposal of The Lobbigssie bribery We can see from thB matrix
that each column represents how the voters think about @ylartissue. In this method of bribery,
The Lobby can pick a column of the matrix and edit it accordimgome budget. The money will
be equally distributed among all the voters and the votebatndities will move accordingly. So,
for d dollars each voter receives a fractiondgh and their probability of voting “yes” changes
accordingly. This can be thought of as special-interestigrdonations. Special-interest groups
such as PETA focus on issues and dispense their funds acrassua rather than by voter. The
bribery could be funneled through such groups.

2.2.3 Voter Bribery (B3)

The third and final method at the disposal of The Lobbyater bribery We can see from thE
matrix that each row represents what an individual voterkthiabout all the issues on the docket.
In this method of bribery, The Lobby picks a voter and thensgayedit the entire row at once with
the funds being equally distributed over all the issues.f@&adj dollars a fraction ofi/n is spent on
each issue, which moves accordingly. The cost of moving tbhervs generated using t matrix

as before. This method of bribery is analogous to “buyingpashing a single politician or voter.
The Lobby seeks to donate so much money to an individual Yo&trhe or she has no choice but
to move his or her votes toward The Lobby’s agenda.

2.3 Evaluation Criteria

Defining criteria for how an issue is won is the next importstep in formalizing our models. Here
we define two methods that one could use to evaluate the elemitcome of a vote. Since we
are focusing on problems that are probabilistic in naturis, important to note that no evaluation
criteria will guarantee a win. The criteria below yield difént outcomes depending on the model
and problem instance.

231 Strict Mgjority (Cy)

For each issue, a strict majority of the individual votergengrobability at least some threshold,

t, of voting according to the agenda. In our running exampde Exampléll), with = 50%, the
result of the votes would b¥ = (0,0,0), because none of the issues has a strict majority of voters
with above 50% likelihood of voting according to the agenda.

2.3.2 Average Majority (C»)

For each issue,j, of a given probability matri®, we define:pj = (2 1p.i)/m. We can now evaluate
the vote to say that; is accepted if and only ipj >t wheret is some threshold. This would, in our
running example, with = 50%, give us a result vector & = (1,0,0).



2.4 |IssueWeighting

Our modification to the model will bring in the concept of issweighting. It is reasonable to
surmise that certain issues will be of more importance tolddieby than others. For this reason we
will allow The Lobby to specify higher weights to the issubattthey deem more important. These
weights will be defined for each issue.

We will specify these weights as a vecWire Z" with sizen equal to the total number of issues
in our problem instance. The higher the weight, the more maoo that particular issue is to The
Lobby. Along with the weights for each issue we are also gaeobjective valu®© ¢ Z* which is
the minimum weight The Lobby wants to see passed. Sincedlagpartial ordering, it is possible
for The Lobby to have an ordering such ag: = w, = --- = wj,. If this is the case, we see that we
are left with an instance of BC;-PLP.

We now introduce the six probabilistic lobbying problemshwssue weighting. Fdre {1,2, 3}
andj € {1,2}, we define:

Name: B;-C;-PROBABILISTIC LOBBYING PROBLEM WITH ISSUE WEIGHTING (B;-C;-PLP-
WIW, for short).

Given: A probability matrixP € Faxl? with tableCp of price functions and a lobby target vector
Z € {0,1}", a lobby weight vectow e Z", an objective valu® € Z*, and a budgeB.

Question: Is there a way for The Lobby to influendé&(using bribery method Band evaluation
criterion G, without exceeding budgd) such that the total weight of all issues for which
the result coincides with The Lobby’s target vecfois at leasiO?

3 Complexity-Theoretic Notions

We assume the reader is familiar with standard notions aet¢ital) complexity theory, such as P,
NP, and NP-completeness. Since we analyze the problenesl staSectiol 2 not only in terms
of their classical complexity, but also with regard to theirameterizeccomplexity, we provide
some basic notions here (see, e.g., Downey and Felldws [fhéwe background). As we derive
our results in a rather specific fashion, we will employ therifig way” as proposed by Cesaiti [4].

A parameterized problen?’ is a subset oE* xN, whereZ is a fixed alphabet anl is the set
of nonnegative integers. Each instance of the parametiepmeblem & is a pair(l,k), where the
second componetitis called theparameter The languagé () is the set of allVES instances of
Z. The parameterized probles? is fixed-parameter tractabléd there is an algorithm (realizable
by a deterministic Turing machine) that decides whethemanti(l,k) is a member oL (%) in
time f(k)|1|¢, wherec is a fixed constant andl is a function whose argumehtis independent of
the overall input lengthll |. The class of all fixed-parameter tractable problems is @ehioy FPT.

The 0*(-) notation has by now become standard in exact algorithmsegdlects not only con-
stants (as the more familia?(-)-notation does) but also polynomial factors in the functesti-
mates. Thus, a problem is in FPT if and only if an instancehwérametek) can be solved in time
0*(f(k)) for some computable functiof




There is also a theory of parameterized hardness, mostinskeo\Wt] hierarchy, which com-
plements fixed-parameter tractability: FETW[0] C W[1] CW[2] C ---. It is commonly believed
that this hierarchy is strict. Since only the second leve2]ywill be of interest to us in this paper,
we will define only this class below.

A parameterized reductiois a functionr that, for some polynomiagb and some functiow, is
computable in time7(g(k)p(|1])) and maps an instan¢k k) of &7 onto an instance(l,k) = (I’,k’)
of &' such that(l,k) is aYES instance ofZ if and only if (I’,k’) is a YES instance of%”’ and
K' < g(k). We then say tha#” reduces ta%”'.

W(2] can be characterized by the following problem on Turing nrae

Name: SHORT NONDETERMINISTIC TURING MACHINE COMPUTATION (SMNTMC, for short).

Given: A multi-tape nondeterministic Turing machiive (with two-way infinite tapes) and an input
stringx (both M andx are given in some standard encoding).

Parameter: A positive integek.

Question: Is there an accepting computationMfon inputx that reaches a final accepting state in
at mostk steps?

More specifically, a parameterized proble# is in W[2] if and only if it can be reduced to
SMNTMC via a parameterized reduction, see Cesati [4]. Taislwe accomplished by giving an
appropriate multi-tape nondeterministic Turing machimesblving &2. Hardness can be shown by
giving a parameterized reduction in the opposite directimm SMNTMC to #.

The complexity of a classical problem depends on the choaempeterization. For problems
that involve a budgdB € N (and hence can be viewed as minimization problems), the abvsbus
parameterization would be the given budget boBndin this sense, we state parameterized results
in this paper. (For other applications of fixed-parametactability and parameterized complexity
to problems from computational social choice, see, e.d],)[1

4 Classical Complexity Results

We now provide a formal complexity analysis of the probakiti lobbying problems for all combi-
nations of evaluation criteria and bribery methods.

Table[1 summarizes our results fof-Bj-PLP,i € {1,2,3} and j € {1,2}. Some of these
results are known from previous work by Christian et al. fg,will be mentioned below. In this
sense, our results generalize the results lof [5] by extgniti@ model to probabilistic settings.

4.1 Microbribery
Theorem 2 B1-C1-PLPisinP.

Proof. The aim is to win all referenda. Per referendurand voterv, we can compute in poly-
nomial time the amouni(r,v) The Lobby has to spend to turn the favorwin the direction of



Bribery Evaluation Criterion

Criterion C, | C,
B P P
B> P P
B3 W/[2]-complete| W[2]-complete

Table 1: Complexity results for;BC;-PLP

The Lobby (beyond the given threshdld In particular, seb(r,v) = 0 if voter v would already
vote according to the agenda of The Lobby. For each isssgert{b(r,v) | 1 <v < m} increas-
ingly, yielding the sequende,(r), ...,bn(r). To win referendunr, The Lobby must spend at least
B(r) = Yi<m+1)/2bi(r) dollars. Hence, all referenda can be won if and onlyjlf; B(r) is at most
the given bribery budge. O

The complexity of microbribery with evaluation criterion, @G somewhat harder to deter-
mine. We use the following auxiliary problem. Heresehedule Sf q jobs (on a single ma-
chine) is a sequencéy),...,Jq such that),) = J impliesr =s. The cost of schedule &
c(S = zﬂzl c(Jiu)- Sis said torespect the precedence constrainfggraphG if for every (path)-
component =J1,...,J pi) and for eachk with 2 <k < p(i), we have: IfJ; x occurs in the schedule
SthenJ k-1 occurs inSbheforeJ; k.

Name: PATH SCHEDULE

Given: AsetV ={J,...,J,} of jobs, a directed grap® = (V,A) consisting of pairwise disjoint
pathsPy, ..., P, two number<,q € N, and a cost function:V — N.

Question: Can we find a schedul&y),...,J;q of g jobs of cost at most respecting the prece-
dence constraints @?

We first show that BrH SCHEDULE is in P. Then we show how to reduce#,-PLP to RRTH
SCHEDULE, which implies that B-C,-PLP is in P as well.

Lemma3 PATH SCHEDULE s inP.

Proof. The following dynamic programming approach finally caleedr [{Pi,...,P,},q], which
gives the minimum cost to solve the problem. We build up aetdifPy,...,P}, j] storing the
minimum cost of scheduling jobs out of the jobs contained in the paths...,P,. LetR =
Ji1,--5dipy- Clearly, fork < p(1), T[{Pi},k] = z';lJl,s. Fork > p(1), setT[{P1},k] = 0. If

> 1, T{Py,...,P}, j] equals mig<x<mingjpep THPL - P}, j — K + 5¥ 1¢(Jrs). Consider
each possible scheduling of the fikgpbbs of P,.. For the remaining — k jobs, look up a solution in
the table. Notice that we can re-order each sche8dle that all jobs from one path contiguously
appear inS, without violating the precedence constraints by thisneéedng, nor changing the cost
of the schedule. Henc@&,[{Py,...,P},q] gives the minimum schedule cost. The number of entries
in the table isz- g, and computing each entiy{{P,...,P/},-] is linear inp(¢) (for each 1< ¢ < 2),

9



which leads to a run time of the dynamic programming algorithat is polynomially bounded by
the input size. O

Theorem 4 B1-C,-PLPisinP.

Proof. Let (P,Cp,Z,B) be a given B-C,-PLP instance, wher ¢ Q{gxl]”, Cp is a table of price

functions,Z € {0,1}" is The Lobby’s target vector, ariflis its budget. Foij € {1,2,...,n}, letd,;
be the minimum cost for The Lobby to bring referendunmnto line with the jth entry of its target
vectorZ. If $%_, dj < Bthen The Lobby can achieve its goal that the votes on all sssgaalZ. We
now focus on the first task. For every, create an equivalentaAPH SCHEDULING instance. First,
compute forr; the minimum numbeb; of bribery steps needed to achieve The Lobby’s goaljon
That s, choose the smalldste N such thapj +bi/(k+1)m > t. Now, for every votew;, derive a path
R from the price functiorg; ;. Lets, 0 <s< k41, be minimum with the property; j(s) € N-o.
Then create a patR = ps,..., k1, Wherepy, represents thith entry ofc j (viewed as a vector).
Assign the cost(pn) = ¢i j(h) — ¢ j(h— 1) to pn. Observe that(n) represents the cost of raising
the probability of voting “yes” fromh—-1)/(k+1) to "/(k+1). In order to do so, we must have reached
an acceptance probability 6f-1)/(k+1) first. Now, let the number of jobs to be scheduledbbe
Note that one can takig; bribery steps at the cost af dollars if and only if one can schedduitg
jobs with a cost ofl;. Hence, we can decide whether or ﬁﬁtcp,z, B) is in B1-C,-PLP by using
the dynamic program given in the proof of Lemma 3. O

Exact Version of Microbribery: The exact variants of probabilistic lobbying via microlanip,
denoted by EACT-B1-C;j-PLP with j € {1,2}, ask whether The Lobby can achieve its goal via
microbribery (for the given evaluation criterion) by spergexactly B dollars. Thus, in these
variants The Lobby is constrained to spending a total amoleactlyB dollars (and no less than
that).

Theorem 5 For j € {1,2}, EXACT-B1-C;-PLPis NP-complete.

Proof. We focus on EACT-B1-C;-PLP and note that the reduction can be carried over straight
forwardly to the case of ¥ACT-B1-C,-PLP.

To see membership in NP, observe that an instan¢&EXACT-B1-C;j-PLP can be transformed
into another instanck of EXAcT-B1-Cj-PLP after guessing which issue and which voter should
be bribed by an amount of money specified by the first non-zetny @ the corresponding row of
the cost matrixCp and modifyingCp accordingly. After repeated guesses, we either arrive at an
amount of left-over money that cannot be used for any bribegmore (since it is either too small
or possibly no money can be spent at all, since all issuesaedsvhave been “completely bribed”);
in this case, the nondeterministic procedure simply st@ps.all money was (exactly) spent. In
that case, it is checked if the evaluation criterion was niett is met, the algorithm gives and
affirmative answer; otherwise, it rejects. Hence, the ntardanistic procedure will either succeed

10



Bribery Evaluation Criterion
Criterion C, | C,
B, NP-compl., FPT| NP-compl., FPT
B> NP-compl., FPT| NP-compl., FPT
B3 W/[2]-complete | W/[2]-complete

Table 2: Complexity results forBC;-PLP-WIW

in one branch, yielding an affirmative answer, or there isalot®n, and no affirmative answer will
be produced.

To show NP-hardness ofAcT-B1-C;-PLP, we provide a reduction fromuBSET SuM (see,
e.g., Garey and Johnsan [15]): Givepn...,a,,Se N*, does there exist a subdet {1,...,n}
such thaty ., a = S? For such a BBSET SuM instance, create anxAcT-B1-C1-PLP instance
with only one referendum; and with voterss,...,vo,. Letk=0. SetR; = 1 andci;(1) = O for
1<i<n,andseB;=0,¢1(0)=0,c1(1) =a_nforn+1<i<2n. LetB=Sandt =0.5. Observe
that we have to influence at least one of the voters not in dacge withr;. Thus we can turm;
to The Lobby’s favor by spending exactdollars on a set of voterg, , ... v, (n+1 <ij; < 2n) if
and only if there is a subsetC {1,...,n}, |I| =¢, such thay;.,a =S O

4.2 IssueBribery
Theorem 6 B,-C1-PLPandB,-C,-PLPare inP.

Proof. We prove that B-C;-PLP is in P; the proof for B-C,-PLP is analogous. Observe that
Bi-C;-PLP (just like the problem OL defined in Sectioh 5) containgeetor that represents the
issues that The Lobby would like to see passed. In Thebieno@/t{see Sectiohl5), the constraint
from OL, b, is expressed over the number\aftersthat need to be influenced. In,BC1-PLP,
however, we are required to influence a certain number oksssurhus, in order to determine
a win we construct @ost differencematrix representing how much it would cost The Lobby to
win each issue (since all voters receive the same amount péynthis can be determined in time
polynomial in the number of voters and issues). Using thi difference matrix, we greedily select
the cheapest issues to influence in order to achieve The [hggnda. O

4.3 Probabilistic Lobbying with Issue Weighting

Table[2 summarizes our results forB;-PLP-WIW,i € {1,2,3} andj € {1,2}. The most interest-
ing observation is that introducing issue weights raisescttimplexity from P to NP-completeness
for all cases of microbribery and issue bribery (though maes the same for voter bribery).
Nonetheless, we show later as Theoter 10 that these NP-emrbblems are fixed-parameter
tractable.

Theorem 7 Fori, j € {1,2}, B;i-Cj-PLP-WIW is NP-complete.
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Proof. Membership in NP is easy to observe for each problerCBPLP-WIW, wherei, j €
{1,2}.

To prove that B-C;-PLP-WIW is NP-hard, we give a reduction fromNKPSACK to
B1-C1-PLP-WIW. In KNAPSACK, we are given a set of objedts = {01,...,0n} with weights
w:U — N and profitsp: U — N, andW,P € N. The question is whether there is a sub-
setl C {1,...,n} such thaty;,, w(o)) <W and 5. p(0;) > P. Given a KNAPSACK instance
(U,w, p,W,P), create a B-C1-PLP-WIW instance wittk = 0 and only one voter;, where for
each issuey;'s acceptance probability is either zero or one. For eackabbj € U, create an issue
rj such that the acceptance probabilitywefis zero. Let the cost of raising this probability op
becy; = w(0j) and let the weight of issug bew; = p(0;). Let The Lobby’s budget b#/ and its
objective value b®© = P. By construction, there is a subdet {1,...,n} with ;. w(o;) <W and
Yiel P(0i) > Pif and only if there is a subsétC {1,...,n} with 3¢ c1j <W andycw; > O.

As the reduction introduces only one voter, there is no ifiee between the bribery methods
B1 and B, and no difference either between the evaluation critefia@ G. Hence, the above
reduction works for all four other problems. O

5 Parameterized Complexity Results

5.1 Voter Bribery

Christian et al.[[5] proved that the following problem iS2¢complete. We state this problem here
as is common in parameterized complexity:

Name: OPTIMAL LOBBYING (OL, for short).

Given: An mxn matrix E and a Q1 vector Z of lengthn. Each row ofE represents a voter.
Each column represents an issue in the election. The v&atpresents The Lobby’s target
outcome.

Parameter: A positive integek (representing the number of voters to be influenced).

Question: Is there a choice df rows of the matrix (i.e., ok voters) that can be changed such that
in each column of the resulting matrix (i.e., for each issug)jajority vote yields the outcome
targeted by The Lobby?

Christian et al. [[5] proved this problem to be [®}fcomplete by a reduction fronk-
DOMINATING SET to OL (showing the lower bound) and from OL toNDEPENDENTk-
DOMINATING SET (showing the upper bound). To employ the2Whardness result of Christian
et al. [5], we show that OL is a special case @f8;-PLP and thus (parameterized) polynomial-
time reduces to B C,-PLP. Analogous arguments apply ta-B,-PLP.

Theorem 8 For j € {1,2}, B3-C;-PLP (parameterized by the budget)W¢[2]-hard.
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Proof. We first prove that B-C;-PLP is WZ2]-hard by providing a parameterized reduction from
OL to B3-C;-PLP, where the parameter (hnumber of voters to be influengethb Lobby) is the
same in both problems. We are given an instafie&, b) of OL, whereE is amxn 0/1 matrix,

b is the number of votes to be edited, ahis the agenda for The Lobby. We may assume without
loss of generality tha? = 1".

We construct an instance 0BC1-PLP consisting of the given matrk= E (a “degenerated”
probability matrix with only the probabilities 0 and 1), armsponding cost matri€p, a target
vectorZ = 1", and a budgeB. Cp has two columns (i.e., we hake= 0, since the problem instance
is deterministic, see Sectibn P.1), one column for proligilland one for probability 1. All entries
of Cp are set to unit cost.

The cost of increasing any value his n, since donations are distributed evenly across issues
for a given voter. We want to know whether there is a set ofdsritf cost at mogi-n = B such that
The Lobby’s agenda passes. This holds if and only if therdbamters that can be bribed so that
they vote uniformly according to The Lobby’s agenda and thaufficient to pass all the issues.
Thus, the given instanc(eE,Z, b) is in OL if and only if the constructed instan(:E,Cp,Z,B) isin
B3-C;-PLP, which shows that OL is a polynomial-time recognizaggecial case of 8C1-PLP,
and thus B-C;-PLP is W2J-hard.

Note that for the construction above it doesn’'t matter whiette use the strict-majority criterion
(Cy) or the average-majority criterion (. Since the entries d? are 0 or 1, we hav@; > 0.5 if
and only if we have a strict majority of ones in tia column. Thus, B-C,-PLP is WZ2]-hard too.

O

Theorem 9 For j € {1,2}, B3-C;j-PLP (parameterized by the budget)Wg[2]-complete.

Proof. Again, we give only the details for the case of-B,-PLP; the proof for B-C,-PLP is
analogous. \\2]-hardness has been shown in Theotém 8. To show membershi2jn\é reduce
B3-C1-PLP to SMNTMC, which was defined in Sectioh 3. To this enduffises to describe how
a nondeterministic multi-tape Turing machine can solvénsutobbying problem.

Consider an instance ofsBC.-PLP: a probability matriXP {8*1]” with a tableCp of price

functions and a budgd. Again, we may assume that the target vectaf is 1". Moreover, we
assume that the target threshblg fixed. We can identify with a certain step level for the price
functions.

The reducing machine works as follows. FrénCp, andt, the machine extracts the information
Hi ;(d), whereH; j(d) is true if eitherp; j >t or ¢ j(t) < d/n (since according to this scenario, the
bribery money is distributed among all issues). Note Hyg(d) captures whether payirgydollars
to voterv; helps to raise the acceptance probabilityiobn referendunr; above the threshold
Moreover, for each referendum, we compute the minimum number of voters that need to switch
their opinion so that majority is reached for that speciffemendum; lets(j) denote this threshold
for rj. Since we assume payments in dollar units, a referendumsyjith> B yields aNO instance.
We can therefore replace any vak(¢) > B by the valueB+ 1.

The nondeterministic multi-tape Turing machilewe describe next has, in particular, access
to H; ; and tos(j). M hasn+ 1 working tapedT;, 0 < j < n, all except one of which correspond to
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issuesj, 1< j <n. We will use the set of voter¥, = {v1,...,Vm}, as alphabet. The (formal) input
tape ofM is ignored.

M starts by writings( j) symbols # onto tap¢ for eachj, 1 < j < n. By using parallel writing
steps, this needs at mdt+ 1 steps, sincg(j) < B+ 1 as argued above.

Second, for eache {1,...,m}, M writesk; symbolsy; from the alphabe¥ on the zeroth tape,
To, such thaty ", ki < B. This is the nondeterministic guessing phase where the anubibribery
money spent on each voter is determined. Notice that no rhareBtvoters can be bribed.

In the third phase, for each voterthat will be bribed M counts the corresponding amout
of bribery money and determines (by usidg;) if it is enough to change;’s opinion regarding the
jthiissue. If so, the head ™ on tapej moves one step to the left. Again, all these head moves are
performed in parallel. Hence, the string on the zeroth tageing processed in at md@&{parallel)

steps.
Finally, it is checked if the left border is reached (agawor)dll tapesTj, j > 0. This is the case
if and only if the guessed bribery was successful. O

5.2 Probabilistic L obbying with I ssue Weighting

Recall from Theorernl7 that;BC;-PLP-WIW, wherd, j € {1,2}, is NP-hard. We now show that
each of these problems is fixed-parameter tractable whemederized by the budget.

Theorem 10 Fori, j € {1,2}, Bi-Cj-PLP-WIW (parameterized by the budget) iskfPT.

Proof. Since the four unweighted variants are in P, we can compuwentimber of dollars
to be spent to win referendum in polynomial time in each case. Now re-interpret the given
Bi-C;-PLP-WIW instance as a¥APSACK instance: Every issug is an objecb; with weightd;

and profitp;, both set to be the same as weightof issuer;. Let the KNAPSACK bound be the
total numberB of dollars allowed to be spent. Now use the pseudo-polynloatggrithm to solve
KNAPSACK in time ¢'(n2/Bl), where|B| denotes the length of the encodingBof O

Voter bribery with issue weighting remains[2fcomplete for both evaluation criteria.
Theorem 11 For j € {1,2}, B3-C;-PLP-WIW (parameterized by the budget)Wg[2]-complete.

Proof. By Theorem[8, B-C;-PLP is WZ2J-hard. Since B-C;-PLP is a special case of
B3-Ci1-PLP-WIW, where all the issues have unit weighg-8;-PLP-WIW is W[2]-hard as well.
An analogous argument shows that-B,-PLP-WIW is W[2]-hard, too.

Membership in W2] is a bit more tricky than in the unweighted case from ThedrerinGhe
following, we indicate only the necessary modifications:

e The reducing machine calculates the differe@detween the target weight and the sum of
the weights of the referenda that are already won.

e For each referendum that is not already won, the reducindnimaéntroduces a special letter
ri to be used on the zeroth tape.
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e The Turing machine that has been built at the very beginrnsgguesses at moBtreferenda
that (additionally) should be won. (Note that influencing &sue costs at least one dollar.)
Then, the Turing machine will sper( f (B)) time to calculate if winning those guessed ref-
erendaiy,...,rp, b < B, would be sufficient to get beyond the threshold. Only if sigficy
is guaranteed, the Turing machine continues working.

e The Turing machine will then continue to work as describethaproof of Theorern|9.

e At the very end, the Turing machine will verify in at md3isteps if all referenda guessed in
the very beginning have been won.

Note that it is quite tempting to try to avoid the weight caddtions within the Turing machine,
letting the reducing machine do this job. However, this seémnecessitate coding the winning
situations in the state set of the Turing machine, leadirgygossible exponential size of this Turing
machine (measured in the overall input size of the votingaxe).

W([2]-completeness of BC,-PLP-WIW can be proven by an analogous argument. [J

6 Approximability

As seen in Tablds 1 andl 2, many problem variants of probabilabbying are NP-complete. Hence,
it is interesting to study them not only from the viewpointpErameterized complexity, but also
from the viewpoint of approximability.

The budget constraint on the bribery problems studied sgivas rise to natural minimization
problems: Try to minimize the amount spent on bribing. Farit}, let us denote these minimization
problems by prefixing the problem name with MIN, leading tg, eMIN-OL.

6.1 Voter Bribery isHard to Approximate

The already mentioned reduction of Christian et @l. [5] {theoved that OL is Vi2]-hard) is
parameter-preserving (regarding the budget). It furtrees the property that a possible solution
found in the OL instance can be re-interpreted as a solutidhe DOMININATING SET instance
the reduction started with, and the OL solution and tr@MININATING SET solution are of the
same size. This in particular means that inapproximabittgults for DDMININATING SET trans-
fer to inapproximability results for OL. Similar obsenats are true for the interrelation oES$
CovER and DOMINATING SET, as well as for OL and BC1-PLP-WIW (or B3-C,-PLP-WIW).

The known inapproximability results][3,20] foile$ CovER hence give the following result (see
also Footnote 4 iri [22]).

Theorem 12 There is a constant & 0 such thatMIN -OL is not approximable within factor ¢
log(n) unlessNP c DTIME (nf°9'°9M) where n denotes the number of issues.

Since OL can be viewed as a special case of ba#fCBPLP and B-Ci-PLP-WIW fori €
{1,2}, we have the following corollary.
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Corallary 13 Fori € {1,2}, there is a constant;c> 0 such that botiMIN -B3-C;-PLPand MIN -
Bs-C;i-PLP-WIW are not approximable within factor; elog(n) unlessNP ¢ DTIME (n/°9'09(m),
where n denotes the number of issues.

Conversely, a logarithmic-factor approximation can besgifor the minimum-budget versions
of all our problems, as we will show now. We first discuss thatien to the well-known 8T
CoVER problem, sketching a tempting, yet flawed reduction andtparout its pitfalls. Avoiding
these pitfalls, we then give an approximation algorithmNdN-B 3-C,-PLP. Moreover, we define
the notion of cover number, which allows to state inappr@bitity results for MIN-Bs-C»-PLP.
Similar results hold for MIN-B-C;-PLP, the constructions being sketched at the end of thegect

Voter bribery problems are closely related to set cover lprob, in particular in the average-
majority scenario, so that we should be able to carry overcequmability ideas from that area. The
intuitive translation of a MIN-B-C,-PLP instance into a&r COVER instance is as follows: The
universe of the derived &S CoVER instance should be the set of issues, and the sets (inghe S
CovEeRrinstance) are formed by considering the sets of issuesdiéd be influenced (by changing
a voter’s opinion) through bribery of a specific voter. Naynethen we pay voter a specific
amount of money, sagt dollars, he or she will invest/n dollars to each issue and possibly change
V's opinion (or at least raiseés acceptance probability to the “next level”). The weighssociated
to the sets of issues correspond to the bribery costs thétrdmanally) incurred to lift the issues in
the set to some “next level.” There are four differences &ssical set covering problems:

1. We cannot neglect the voter who has been bribed, so differgers (with different bribing
costs) may be associated with the same set of issues.

2. The sets associated with one voter are not independemtedeéd voter, the sets of issues
that can be influenced by bribing that voter are linearly tedeby set inclusion. Moreover,
when bribing a specific voter, we have to first influence thealen sets” (which might
be expensive) before possibly influencing the “larger onse; weights are attached to set
differences, rather than to sets.

3. Acover number @) is associated with each issug indicating by how many levels voters
must raise their acceptance probabilities in order to eravaverage majority far;. The
cover numbers can be computed beforehand for a given irstaihen, we can also associate
cover numbers to sets of issues (by summation), which firle#igs to the cover number
N = y7_;c(rj) of the whole instance.

4. The money paid “per issue” might not have been sufficieninfiluencing a certain issue up
to a certain level, but it is not “lost”; rather, it would matte next bribery step cheaper, hence
(again) changing weights in the set cover interpretation.

To understand these connections better, let us have arotieat our running example (under
the voter bribery with average-majority evaluation), assig an all-ones target vector. If we paid
30 dollars to voters, he or she would invest 10 dollars to each issue, which waikkrhis or her
acceptance probability for the second issue from .3 to .4pther issue level is changed. Hence,
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this would correspond to a set containing ompywith weight 30. Note that by this bribery, the
costs for raising the acceptance probability of vateto the next level would be lowered for the
other two issues. For example, spending 15 more dollang evould raisersz from .5 to .6, since
all in all 45 dollars have been spent on votey which means 15 dollars per issue. If the threshold
is 60% in that example, then the first issue is already acdgpiedesired by The Lobby), but the
second issue has gone up from .5 to .6 on average, which nmeatnge have to raise either the
acceptance probability of one voter by two levels (for exknpy paying 210 dollars to votes),
or we have to raise the acceptance probability of each vgtemk level (by paying 30 dollars to
voterv; and another 30 dollars to votes). This can be expressed by saying that the first issue has
a cover number of zero, and the second has a cover number of two

When we interpret an OL instance as & 8,-PLP instance, the cover number of that resulting
instance equals the number of issues, assuming that the feotall issues need amendment. Thus
we have the following corollary:

Corollary 14 There is a constant & 0 such thatMIN -B3-C,-PLP is not approximable within
factor c-log(N) unlessNP ¢ DTIME (N'°9'°9N)) ' where N is the cover number of the given instance.
A fortiori, the same statement holds fldiN -B3-Co-PLP-WIW.

Let H denote the harmonic sum function, i.el(r) = ¥{_; ¥/i. It is well known thatH (r) =
O(log(r)). More precisely, it is known that

[Inr| <H(r)<|Inr|+1
We now show the following theorem.

Theorem 15 MIN -B3-C,-PLP can be approximated within a factor bf(N) + 1, where N is the
cover number of the given instance.

Proof. Consider the following greedy algorithm (given threshblaind assuming (w.l.0.g.) the
target vectorl); notice that the cover numbers (per referendum) can bepeted from the cost
matrix Cp and the thresholtbefore calling the algorithm the very first time:

Greedy Voter Bribery (GVB):
Input: A probability matrixP € QB}” (implicitly specifying a seV of mvoters and a seR of n
referenda), a cost matr@p, andn cover numbers(ry),...,c(rn) € N.

1. Delete referenda that are already won (indicated(by) = 0), and modifyR andCp accord-
ingly.

2. IfR=0, STOP.

3. For each votev, compute the cheapest amount of mormgythat allows to raise any level in
Cp. Letn, be the number of referenda whose levels are raised whenisgehddollars on
voterv.

4. Bribe voterv such thatv/n, is minimum.
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5. Modify Cp by subtractingh/n from each amount listed for voter

6. Modify c by subtracting one frona(r) for those referenda € R influenced by this bribery
action.

7. Recurse.

Observe that our greedy algorithm influences voters onlyaiiing their acceptance probabil-
ities by only one level, so that the amoufytpossibly spent on voterin Step 3 of the algorithm
actually correponds to a set of referenda; we do not havertsider multiplicities of issues (raised
over several levels) here.

LetS,...,S be the sequence of sets of referenda picked by the greedyrpalgorithm, along
with the sequencey, ..., v, of voters and the sequendg,...,d, of bribery dollars spent this way.
LetR1 =R,...,R;,,Ry.1 = 0 be the corresponding sequence of sets of referenda, léthdcord-
ingly modified cover numbers. Let j(r,k) denote the index of the set in the sequence influencing
referendunr thekth time withk <c(r), i.e.,r € Sy and|[{i < j(r) [r € §}| = k—1. To cover
thekth time, we have to pay (r,k) = djww/|sj«| dollars. The greedy algorithm will incur a cost of
Xgreedy= 2reR i x(r.k) in total.

An alternative view on the greedy algorithm is from the pecijve of the referenda: By running
the algorithm, we implicitly define a sequenge. . ., ry of referenda, wherll = c(R) = 5, rC(r) is
the cover number of the original instance, such 8at {rs,...,rs |}, S = {r|g+1,-- > NS +/9/
etc. Ties (how to list elements withig) are broken arbitrarily. This (implicitly) defines two func
tionsL,R: {1,...,¢} — {1,...,N} such that§ = {r - rr}. Slightly abusing notation, we can
associate a cogf/(r;) to each element in the sequence (keeping in mind the maltipk of cover-
ing implied by the sequence), so tb%}reedy: yN . x'(ri). Notice thaid; = S L(i)<r<rai) X (%)-

Considerr; with L(i) < j <R(i). The current referenda sBt has cover numbex — L(i) + 1,
i.e., of atleasN — j+1. Let xopt be the cost of an optimum bribery strategy of the original uni-
verse. Of course, this also yields a cover of the referend, seith cost at moskopt. The average
cost per element (taking into account multiplicities asgiby the cover numbers)¥gpt/c(R). (So,
whether or not some new levels are obtained through bribeeg dot really matter here, as long as
the threshold is not exceeded.)

¢* can be described by a sequence of sets of refer€pda. ,C, , with corresponding voters
z,...,Zg and dollarsdy, ..., d3 spent. Hencexopt = zﬂzld,’;. To each bribery step we associate
the cost factof/|c|, for each issue contained irC,. ¢™* could be also viewed as a bribery strategy
for R.. By pigeon hole, there is a referendurin R, (to be influenced thkth time) with cost factor
at mostdi/|c.nRr| < Xopt/c(R), wherek is the index such that, containsr for the kth time in¢*
(usually, the cost would be smaller, since part of the byiliers already been paid before). Since
(S,Vvi) was picked to minimizé/|s|, we finddi/|s| < di/|ccnR| < Xopt/c(R).

We conclude that

X/(rj) < Xopt/c(R) = Xopt/N-L()+1 < Xopt/N—j+1.

Hence Xgreedy= 211X (j) < ¥ {L1XopyN-i+1=H(N)xopt < (In(N) + 1) Xopt: 0
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In the strict-majority scenario, cover numbers would hawdifi@rent meaning—we thus call
them strict cover numbersFor each referendum, the corresponding strict cover nurghe in
advance how many voters have to change their opinions fhgrthem individually over the given
thresholdt) to accept this referendum. Again, the strict cover numbber groblem instance is the
sum of the strict cover numbers of all given referenda.

The corresponding greedy algorithm would therefore chéosefluence votew; (with d; dol-
lars) in theith loop so that; changes his or her opinion on some referendyigpossibly, there is a
whole setp; of referenda influenced this way), so tigip;| is minimized.

We can now read the approximation estimate proof given feraberage-majority scenario
nearly literally as before, by re-interpreting the forniida “influencing referendunm” meaning
now a complete change of opinion for a certain voter (not gashing one level somehow). This
establishes the following result.

Theorem 16 MIN-B3-C;-PLP can be approximated within a factor bf(N) + 1, where N is the
strict cover number of the given instance.

Note that this result is in some sense stronger than Theloke(wHtich refers to the average-
majority scenario), since the cover number of an instancéddee larger than the strict cover num-
ber.

This approximation result is complemented by a correspantardness result.

Corollary 17 There is a constant & 0 such thatMIN -B3-C;-PLP is not approximable within
factor c-log(N) unlessNP ¢ DTIME(N'°909N)) "where N is the strict cover number of the given
instance. A fortiori, the same statement holdsNtN -B3-C1-PLP-WIW.

Unfortunately, those greedy algorithms do not (immedyatalansfer to the case when issue
weights are allowed. These weights might also influence tladitg of approximation, but a sim-
plistic greedy algorithm might result in covering the “wgdnarguments. Also, the proof of the
approximation factor given above will not carry over, sinee need as one of the proof’s basic in-
gredients that an optimum solution can be interpreted agial@ne at some point. Those problems
tend to have a different flavor.

6.2 Polynomial-Time Approximation Schemes

Those problems for which we obtained FPT results in the chs&soe weights actually enjoy a
polynomial-time approximation scheme (PTAS). The proofle¢oreni 1D can be easily turned into
a PTAS using standard techniques, since that result wametthy transferring pseudo-polynomial
time algorithms.

Theorem 18 Fori, j € {1,2}, MIN-B;-C;-PLP-WIW admits a PTAS.

The exact version of microbribery also admitted an FPT4tglsut this cannot be interpreted as
an approximation result, since the entity that should beémired has to be hit exactly(otherwise,
we have polynomial time).
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7 Conclusions

We have studied six lobbying scenarios in a probabilistitirag both with and without issue
weights. Among the twelve problems studied, we identifieséhthat can be solved in polynomial

time,

those that are NP-complete yet fixed-parameter tshstand those that are hard (namely,

W/[2]-complete) in terms of their parameterized complexity veitlitable parameters. It would be
interesting to study these problems in different paranettons. Finally, we investigated the ap-
proximability of hard probabilistic lobbying problems gwout issue weights) and obtained both
approximation and inapproximability results. An intenegtopen question is whether one can find
logarithmic-factor approximations for voter bribery wisue weights.
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