
Extending the Belgian eID technology with
mobile security functionality

Jorn Lapon1, Bram Verdegem1, Pieter Verhaeghe2,
Vincent Naessens1, Bart De Decker2

1 Katholieke Hogeschool Sint-Lieven, Department of Industrial Engineering
Gebroeders Desmetstraat 1, 9000 Gent, Belgium

2 Katholieke Universiteit Leuven, Department of Computer Science,
Celestijnenlaan 200A, 3001 Heverlee, Belgium

Abstract. The Belgian Electronic Identity Card was introduced in
2002. The card enables Belgian citizens to prove their identity digitally
and to sign electronic documents. Today, only a limited number of citi-
zens really use the card in electronic applications. A major reason is the
lack of killer functionality and killer applications.
This paper presents two reusable extensions to the Belgian eID technol-
ogy that opens up new opportunities for application developers. First,
a secure and ubiquitously accessible remote storage service is presented.
Second, we show how the eID card can be used to issue new certificates.
To demonstrate the applicability and feasibility of both extensions, they
are combined in the development of a secure e-mail application. The
proposed solution offers strong privacy, security and key management
properties while increasing the accessibility of confidential e-mail com-
pared to existing solutions (such as PGP and S/MIME).

Key words: Identity Technology, Security, Privacy, Mobile Access

1 Introduction

In 2002, Belgium has introduced an electronic identity card (eID) [1] as one of
the first countries in Europe. The card enables individuals to prove their iden-
tity digitally and to sign electronic documents. The Belgian eID card opens up
new opportunities for the government, their citizens, service providers and ap-
plication developers. Although many eID applications have been developed, the
success of the Belgian eID technology is still limited. A major reason is the lack
of essential functionality and, more importantly, real killer applications. More-
over, the use of the current eID card involves a few security and privacy hazards
[2, 3].
This paper presents two enhancements to the current Belgian eID technology
while addressing certain privacy shortcomings. A first extension defines a ser-
vice that allows users to store and update sensitive data (such as passwords,
keys, tickets, . . .) securely at a remote location. The service is ubiquitously ac-
cessible with the Belgian eID card. Moreover, the data that is kept at the server

2 Extending the Belgian eID technology with mobile security functionality

is useless to internal and external attackers. A second extension defines the cre-
ation and use of proxy certificates that are certified by means of the Belgian eID
card. Hence, an individual can create new certificates that can be used to send
confidential messages, to setup a mutually authenticated secure channel between
two individuals, etc. An external certificate authority is no longer required to
issue these certificates.
Both extensions are bootstrapped by means of the Belgian eID Card and can be
integrated in many applications. To demonstrate their usefulness, both exten-
sions have been incorporated in a ubiquitously accessible secure e-mail service.
This service allows individuals to send confidential (encrypted) and signed mes-
sages using certificates that can be validated by certificate chains. The approach
is more secure than PGP (which is based on trust levels) and tackles some key
management problems in S/MIME (i.e. confidential e-mail can be retrieved from
any location at which a web browser, Internet access and a card reader is avail-
able).
The paper is structured as follows. Section 2 gives an overview of the Belgian
eID card technology. Section 3 describes the notation used in the rest of the
paper. Two extensions to the Belgian eID technology are proposed in section 4
and section 5. Both extensions are evaluated in section 6 and validated through
the development of a secure e-mail application in section 7. Finally, the paper
draws some conclusions and describes directions for future research.

2 Belgian Electronic Identity Card technology

The Belgian eID card is a smart card that allows Belgian citizens to prove their
identity visually and digitally and to sign electronic documents [4]. The eID card
contains three files: (1) a digital picture of the citizen, (2) an identity file which
contains the basic identity information and a hash value of the picture file; this
file is signed by the National Registry, (3) an address file which contains the
citizen’s current residence; it is signed by the National Registry together with
the identity file to guarantee the link between both files.
Two private keys SKAuth and SKSig are stored in the eID card. These keys
are used for digital authentication and signing respectively. They are stored in
a tamper-proof part of the chip and can be activated with a PIN code. Each
corresponding public key (PKAuth and PKSig) is certified by a certificate. Each
certificate also keeps the name of the card holder and his nation-wide identifica-
tion number (i.e. the National Registry Number or NRN).
The Belgian government offers a middleware package [5, 6] to facilitate interac-
tion with the eID card. The middleware contains a GUI to enable end-users to
read the files and the certificates that are stored in the eID card and to change
the PIN code. Moreover, the middleware acts as an intermediary for all accesses
to the eID card by other applications. If a document has to be signed, the mid-
dleware passes a hash of the document to the card. Similarly, a hash of the
challenge is passed to the card for authentication purposes. When an applica-
tion wants to authenticate or sign a document with the eID card, the middleware

Enhancing the functionality of the Belgian eID card 3

asks the user for a PIN code and forwards it to the eID card. The middleware
can also check the validity of certificates (using CRL or OCSP). Note that the
middleware is not essential: an application can also implement the middleware
functionality and directly interact with the card.
The certificates on the eID card are part of a larger hierarchical infrastructure,
the Belgian Public Key Infrastructure [7]. The signature and authentication cer-
tificates are issued by a Citizen CA and the certificates of each Citizen CA are
issued by the Belgium Root CA, that is found at the top of the eID hierarchy.
In addition to the CA hierarchy, the PKI defines Certificate Revocation Lists [8]
that contain the serial numbers of revoked certificates issued by that CA.
The government aims at encouraging the use of the eID card in both e-
government and commercial applications. Currently, most applications use the
Belgian eID card for setting up an SSL connection with mutual authentication.
Many other applications (such as physical access control) only retrieve the iden-
tity information stored on the card.

3 Notations

The following notation is used throughout this paper:

– P1 ↔ P2 : NRN← authenticateeID() represents an interactive protocol, in
which P1 uses SKAuth in the eID card to authenticate to P2. As a result, P2

obtains P1’s NRN .
– P : sig ← signeID(hash(M)) denotes a user signing the hash of message M,

with SKSig in the eID card.
– P : K ← createSymmetricKey(PRG, seed) denotes the generation of a se-

cret/symmetric key, based on a pseudorandom number generator PRG and a
seed. Use of the same PRG and seed will always generate the same key.

– P : store(data; index) means that data is stored in a database at location index.

4 Mobile access to secrets

A major challenge in today’s society is to enable access to sensitive data (e.g.
personal information, secret keys, . . .) from various locations. Data must be
stored securely on an easily accessible remote server. Data is typically encrypted
by the owner before it is stored on the server. Hence, the encrypted data is use-
less to the server or any adversary that may have access to it. In this section a
scheme is discussed based on the Belgian eID card for securely storing sensitive
data. A trivial solution consists of encrypting the data with the public key of
the authentication certificate. Whenever needed, the ciphertext is fetched from
the server and decrypted using the corresponding private key.
However, encryption/decryption with the Belgian eID card is not possible. More-
over, when the card is lost or renewed, decryption of previously encrypted infor-
mation is no longer possible. Therefore, a new mechanism is proposed that uses

4 Extending the Belgian eID technology with mobile security functionality

the Belgian eID card as a bootstrap. A secret/symmetric key is derived from a
signature generated by the eID card. This secret key is used for encrypting data
before it is stored. When a user wants to retrieve his confidential information,
the encrypted information is fetched from the server and decrypted with the se-
cret key, regenerated using the same eID card. In the following paragraphs, the
protocols for storing and retrieving sensitive data are discussed in more detail.
storeSensitiveData(data, tag):

(1) U : HkeyGen ← hashA(′KEY GEN ′||NRN ||CardNumber||otherUserInfo)
(2) U ↔ C : sig ← signeID(HkeyGen)
(3) U : KS ← createSymmetricKey(PRG, hashB(sig))
(4) U : Etag ← encrypt(tag, KS)
(5) U : R← generateRandom()
(6) U : KD ← createSymmetricKey(PRG, hashC(sig||R))
(7) U : Edata ← encrypt(data, KD)
(8) U ↔ S : NRN ← authenticateeID()
(9) U → S : (Edata, R, Etag)
(10) S : index← hashD(NRN ||Etag)
(11) S : store([Edata, R]; index)
(12) U ← S : (T imestamp, signS(hashE([T imestamp, Etag, Edata, R])))

Table 1. Storing sensitive data remotely.

Storing sensitive data. Table 1 shows the steps for storing sensitive data. The
user provides the data to be stored and a secret tag that serves as a name or
alias of the data.
First, the Belgian eID card is used to generate secret keys as follows. A message
with a fixed format is hashed using the middleware (1). The message consists
of a header ’KEYGEN’, the NRN , the serial number of the eID card and pos-
sibly some other user information, making the message card specific. The hash,
HkeyGen, is then signed with the signature key on the eID card resulting in a
1024 bits signature sig (2). The fixed format prevents that an adversary obtains
sig by requesting a signature on a forged message; any message to be signed
by the eID card should not match this format, except in this protocol. Subse-
quently, sig is used as the seed for generating two new symmetric keys, namely
KS and KD. To ensure that the same keys are generated, independent of the
platform, a specific pseudo-random generator PRG is passed as a parameter of
the createSymmetricKey function; also, the hash-functions used should be fixed.
KS is used for encrypting the secret tag associated with the data. The key is
derived from the hash of sig (3-4). The encrypted tag Etag is used in step 10 of
the protocol to derive an index to a record in the server database. KD is used for
encrypting the data. Each time information is stored (i.e. each time the protocol
is invoked), a new random number R is associated with it (5). From the hash of
R and sig the encryption key KD is derived (6) with which the data is encrypted
into the ciphertext Edata (7). In each execution of storeSensitiveData the data
will be encrypted with another key; this prevents linking of the same encrypted
data that is stored in more than one location.
Next, the encrypted data Edata is stored on a remote server S. First, the user

Enhancing the functionality of the Belgian eID card 5

authenticates with his eID, to ensure that later only the owner U can retrieve his
data (8). Next, U sends the encrypted tag Etag and the encrypted data Edata to
S (9). The NRN , disclosed during the authentication, is hashed together with
Etag and will be used as an index to the information that is stored in the server
database (10). The use of the encrypted secret tag, Etag, ensures the user’s pri-
vacy, while making the index tag specific. A different tag* will result in another
index. If the server S is trustworthy and does not store the user’s NRN nor the
Etag, dictionary attacks on the index are no longer feasible. An adversary with
full access to the server data cannot link any data to a particular citizen.
Finally, the database stores a record with the encrypted data and the random
number R at location index (11). Although useless to the server or any other
adversary, the random number R is necessary for the owner of the data to derive
the correct symmetric key for decrypting Edata. A receipt is sent to the user,
certifying the proper storage of the encrypted data (12).
retrieveSensitiveData(tag):

(1) U : HkeyGen ← hashA(′KEY GEN ′||NRN ||CardNumber||otherUserInfo)
(2) U ↔ C : sig ← signeID(HkeyGen)
(3) U : KS ← createSymmetricKey(PRG, hashB(sig))
(4) U : Etag ← encrypt(tag, KS)
(5) U ↔ S : NRN ← authenticateeID()
(6) U → S : requestRecord(Etag)
(7) U ← S : record← getRecord(hashD(NRN ||Etag))
(8) U : KD ← createSymmetricKey(PRG, hashC(sig||record.R))
(9) U : data← decrypt(record.Edata, KD)

Table 2. Retrieving sensitive data remotely.

Retrieving sensitive data. When the data has been stored on the remote server,
it can be retrieved by the owner from anywhere (see table 2). First, the hash
HkeyGen is regenerated (1) and signed with the eID card (2). With the signature
sig, the secret key KS (3) is regenerated for encrypting the secret tag (4). Next,
the user authenticates with his eID card (5). The encrypted secret tag, Etag is
sent to the server S and the corresponding record requested (6). The server S
fetches the record with index = hashD(NRN ||Etag) from his database; the record,
comprising of encrypted data and the random number, is sent to U (7). U can
now regenerate the data specific secret key KD from the hash of sig and R (8).
Finally, U decrypts Edata with the secret key KD (9).

Recovery of keys. This scheme exploits the property that a deterministic sig-
nature algorithm is implemented in the eID card. When creating a signature
with the eID card, the same input (HkeyGen), always results in the same sig-
nature sig. As such, using the same PRG and the same hash-functions (hashA

.. hashD), the same secret keys KS and KD (for a certain R) are always re-
generated. However, in case of loss or renewal of the eID card, PK Sig, SK Sig

and CardNumber will have changed and the generated signature sig* no longer
matches the signature sig (generated by the previous eID card), impeding the
localization and decryption of the stored information. Therefore, to protect im-

6 Extending the Belgian eID technology with mobile security functionality

portant data, a secured backup of the signature sig is created the first time this
signature is generated. In case of loss or renewal, sig is restored from the backup
and the keys can be recovered. This secured backup could be provided by a key
escrow service.

5 Proxying the Belgian eID

As illustrated above, it is now possible to perform symmetric encryption based
on the Belgian eID card. However, when other parties are involved, asymmetric
encryption may be required. Therefore, a second encryption scheme based on
the eID card is proposed.

Proxy certificates. Although the eID card itself cannot encrypt nor decrypt data,
the right to do this can be delegated to the host. This restricted delegation and
proxying to another entity is achieved through proxy certificates [9]. A proxy cer-
tificate is an extended version of a normal X.509 certificate. Proxy certificates
can be derived from and signed by a normal X.509 certificate or by another
proxy certificate. Once a proxy certificate is created, the proxy certificate and
its corresponding private key can be used for asymmetric encryption resp. de-
cryption.
Modified standard. The standards for proxy certificates, as defined in the RFC
3820, impose some problems. Therefore, some modifications have to be made (see
figure 1). First, according to the RFC, proxy certificates should be issued by the
authentication certificate, since only this certificate of the Belgian eID contains
the required key-usage attribute. The key-usage attribute defines the purpose
of the public key contained in the certificate. However, using the authentication
key SKAuth is less secure than using the signature key SKSig since the PIN is
only required for the first authentication (Single Sign On feature), while it is
required for every signature. Therefore, SKSig is used to issue proxy certificates.
Second, the Belgian legislation prohibits to store the NRN . However, the NRN
is stored in the subject field of the eID certificates. This implies that the eID
certificates may not be stored. However, the proxy certificate standard defines
that the subject of the issuing certificate is copied into the issuer and subject
fields of new proxy certificates. To solve this problem, the name of the owner is
copied into the subject field and the hash of the NRN is copied into the issuer
field instead of the subject of the eID certificate. For validation purposes, the
serial number of the issuer certificate is also included in the certificate (i.e. is-
suerSN). Additionally, another extra attribute indicates the type: BEID-PROXY.
In this scheme, we assume that when the eID certificate is revoked (e.g. in case
of loss or theft), the issued proxy certificates are no longer valid. Moreover, the
proxy certificate must expire before the expiration date of the eID certificate.
The protocol in table 3 demonstrates the creation of a BeID proxy certificate.
The user U generates an asymmetric key-pair (1). A serial number is generated
from the hash of the NRN and the issueDate of the new proxy certificate (2-3).
The NRN in the hash avoids collisions, while the issueDate enables users to have

Enhancing the functionality of the Belgian eID card 7

Fig. 1. Content of the modified proxy certificate

more than one proxy certificate. A proxy certificate proxyCert is then generated
and certified with SKSig of the eID card (4).
createBeIDProxy([attributes]):

(1) U : (SKU ,PKU)← generateKeyPair()
(2) U : issueDate ← getDate()
(3) U : serialNb ← hash(NRN ||issueDate)
(4) U : proxyCert ← generateProxy(BEID-PROXY, certSig, serialNb,

PKU , issueDate, crlLocation, [attributes]; SKSig)

Table 3. Create a new proxy certificate.

Revocation. A special purpose server Rp can publish revoked proxy CRLs. To re-
voke a proxy certificate (cfr. table 4), the user authenticates with his eID card (1)
and sends the proxy certificate he wants to revoke (2). If the issuer corresponds
to the eID signing certificate (i.e. hash(certSig.NRN) = proxyCert.Issuer), the
proxy certificate is revoked by adding its serial number to the latest CRL.
revokeBeIDProxy(proxyCert):

(1) U ↔ Rp : NRN ← authenticateeID()
(2) U → Rp : revokeCertificate(proxyCert.serialNumber)
(3) S : if (hash(certSig.SubjectName.NRN) 6= proxyCert.Issuer) abort
(4) U ← S : true← addToCRL(proxyCert.serial)

Table 4. Revoke a proxy certificate account.

Validation. A receiver validates a new proxy certificate by checking the validity
period, its revocation status and by verifying the rest of the certificate chain.
Since the hash of NRN is kept in the issuer field, name chaining (cfr. RFC 3280
[10]) for certification path validation will fail. However, the extra attribute is-
suerSN included in the certificate binds the eID certificate to the proxy certifi-
cate. The first step in creating the certification path is thus modified. The serial
number of the eID certificate must match the issuerSN in the proxy certificate.
To comply with Belgian legislation, the eID certificate is removed after valida-
tion. Hence, future validation is not possible. However, verifying the validity
period and the revocation status suffices. This can be performed as the proxy
certificate is stored at a trusted location. Additionally, the revocation status of
the eID certificate can be verified by checking the issuerSN of the proxy certifi-

8 Extending the Belgian eID technology with mobile security functionality

cate in the CRLs of the Belgian eID.

Belgian citizens can now create legitimate proxy certificates themselves, that
can be used in many applications. Moreover, once a proxy certificate has been
created, the Belgian eID is no longer required.

6 Discussion

The extensions discussed above promise new opportunities for the Belgian eID
technology. Not only can the eID card be used for digital signatures or authen-
tication, the eID technology can also be used to store and to retrieve sensitive
data. The user only needs his card to access the encrypted data that is stored
on the remote server. However, adversaries might try to retrieve the secret keys
by continuously sending challenges to the eID card. Our solution tackles the
thread by using the signature key in the eID card. The latter requires a PIN for
every signature in contrast to the authentication key, which only requires a PIN
once. Moreover, the fixed format of the message allows to detect trojan horses
or malicious applications that request users to sign a certain message.

To support recovery of sensitive data if the eID card is lost or invalid, a secure
backup of the signature sig needs to be created the first time this signature is
generated. However, the user remains responsible for making the secure backup.
An alternative approach is to support a key-escrow mechanism [11, 12]. The
secret sig is then split into n parts using a secret sharing algorithm and each
part is stored on a different escrow server. To reconstruct the secret, all n parts
are retrieved from the escrow servers and the interpolation of the parts results in
the secret. To ensure that users only obtain their own keys, eID authentication
can be used with the escrow servers. Additionally, a hash of NRN and the serial
number of the eID card can be combined as an index to store a part of the secret.
Every citizen can –online– lookup his current and previous card numbers at the
National Registry.

The proxy certificate mechanism allows owners of an eID card to setup mu-
tually authenticated secure channels without the need for a trusted third party.
Secure communication is even no longer restricted to SSL. The proposed system
with proxy certificates makes it more flexible and extensible. Although not com-
pletely complying with the standards, the proposed scheme supports asymmetric
encryption with the eID card. Moreover, the proxy certificates can be used for
asynchronous communication (i.e. recipients can decrypt confidential messages
after the communication channel is closed). Once the sender has deleted the eID
certificate (as imposed by Belgian legislation), he can still check the validity of
the proxy certificate and the revocation status of the eID certificate. Although
other certificates in the validation path (i.e. Citizen CA, Belgium Root CA, . . .)
may have been revoked, the proxy certificate can include the issuer of the eID
certificate as an extra attribute to verify the validity of the rest of the certificate
chain. Note that optional attributes in the proxy certificate may further restrict
its use.

Enhancing the functionality of the Belgian eID card 9

7 A mobile and secure e-mail client

Both extensions discussed above are combined into a proof-of-concept applica-
tion. An e-mail client has been developed. It supports exchanging confidential
e-mail messages using the BeID proxy mechanism described in section 5. Indi-
viduals can use the e-mail service at any location as the necessary key material
and contact information are stored securely on an easy accessible remote server.

7.1 Requirements

– R1: The secure e-mail application is simple to use.
– R2: The e-mail service is ubiquitously accessible.
– R3: Certificates can be revoked (using CRL, OCSP).
– R4: Contact information is kept private.
– R5: Data stored on a remote server is useless to any third party.

7.2 Protocols

In this discussion, abstraction is made of the message format and the e-mail
system that is responsible for the transport of e-mail messages. The protocols
are designed to be compatible with existing e-mail systems.

setupProxy-Protocol (cfr. table 5). This protocol defines the creation and storage
of an e-mail proxy certificate. The user U generates a proxy certificate with his
e-mail address as an extra attribute (1). Next, a list of already existing creden-
tials creds (i.e. certificates and corresponding private keys) is fetched from the
remote secure store (2). The new credential consisting of SK proxy and proxyCert
is added to the credential list (3). Finally, the updated list is uploaded to the
remote store (4).
setupProxy():

(1) U : (SKproxy, proxyCert) ← createBeIDProxy([E −mail : U.email])
(2) U ← S : creds ← retrieveSensitiveData(U.email + ”.creds”)
(3) U : creds* ← addToCredentials(creds, [SKProxy, proxyCert])
(4) U → S : storeSensitiveData(creds*, U.email + ”.creds”)

Table 5. Creating and remote storage of a proxy.

receiveBeIDProxy-Protocol (cfr. table 6) defines how a user U1 requests a valid
proxyCert from another user U2 and adds it to his contacts in the remote secure
store. Storing the contact certificates online is required to enable remote access
from hosts on other locations. U1 requests the proxy certificate of U2 (1). Then,
U2 fetches his certificate from his secure credential store (2-3) and sends it to
U1 (4). U1 verifies the validity of the proxy certificate, taking into account the
modified certificate path generation (5). To comply with the Belgian legislation,
eID2.certsig is deleted after validation (6). Finally, U1 adds the proxy certificate
to his secure contact store indexed with the e-mail address (7-9).

10 Extending the Belgian eID technology with mobile security functionality

receiveBeIDProxy():

(1) U1 → U2 : requestCertificate()
(2) U2 ← S2 : creds← retrieveSensitiveData(U2.email + ”.creds”)
(3) U2 : proxyCert← lookup(creds, U2.email)
(4) U1 ← U2 : (proxyCert, eID2.certsig, certCitizenCA , certBelgiumRootCA)
(5) U1 : if (!isValidCert(proxyCert, [eID2.certsig, . . .])) abort
(6) U1 : delete(eID2.certsig)
(7) U1 ← S1 : contacts← retrieveSensitiveData(U1.email + ”.contacts”)
(8) U1 : contacts* ← addToContacts(contacts,

[proxyCert, certChain/eID2.certsig])
(9) U1 → S1 : storeSensitiveData(contacts*, U1.email + ”.contacts”)

Table 6. Retrieve the proxy certificate of a contact.

sendEncryptedEmail -Protocol. Table 7 shows the protocol to send a confidential
message between two users. First, U1 fetches the proxy certificate proxyCertU2,
which he received earlier, from his contact store (1-2). U1 verifies the validity
of the proxyCertU2 (3). To improve the performance, a symmetric encryption
scheme is used to encrypt the message. Therefore, a new random symmetric key
sK is created (4-5). Next, the symmetric key sK itself is encrypted with the pub-
lic key proxyCertU2.PK in the proxy certificate of the contact U2 (6). Both the
encrypted message and encrypted symmetric key are mailed to U2 (7). To read
the confidential message, U2 fetches the corresponding secret key SKU2 (8-9))
to decrypt the symmetric key sK* (10). Finally, the message is decrypted with
sK* (11).
sendSecureEmail(message):

(1) U1 ← S : contactsU1 ← retrieveSensitiveData(U1.email + ”.contacts”)
(2) U1 : (proxyCertU2, certChain)← lookup(contactsU1, U2.email)
(3) U1 : if (!isValidProxy(proxyCertU2, certChain))abort
(4) U1 : sK ← createSymmetricKey()
(5) U1 : Edata ← encrypt(msg, sK)
(6) U1 : EsK ← encrypt(sK, proxyCertU2.PK)
(7) U1 → U2 : sendEmail(Edata, EsK , U2.email)
(8) U2 ← S : creds ← retrieveSensitiveData(U2.email + ”.creds”)
(9) U2 : SKU2 ← lookupKey(U2.email, credsU2)
(10) U2 : symKey* ← decrypt(EsK , SKU2)
(11) U2 : message* ← decrypt(Edata,symKey*)

Table 7. Sending and receiving an encrypted message

7.3 Evaluation

This paragraph first evaluates the initial requirements. Next, our solution is
compared to other approaches for securing e-mail services.

– R1: Only the setup and request of a proxy certificate may imply some addi-
tional user interaction. The other protocols can be processed transparently. Of
course when accessing the remote secure store or creating new proxy certifi-
cates, two PINs of the eID card are required: for authentication and signing

Enhancing the functionality of the Belgian eID card 11

(key generation). This may seem awkward. However, a possible solution may
be to detach the fetching and storing of secure data (i.e. retrieveSensitiveData
resp. storeSensitiveData) from the protocols above and only perform them at
the initialization and closing of the e-mail client: the user will have to enter
his authentication PIN once and his signing PIN twice (of which one can be
avoided if the application caches the signature temporarily).

– R2: Confidential e-mails can be sent and received from any host with a card
reader.

– R3: A separate server maintains CRLs of revoked proxy certificates. Moreover,
a sender can verify that the eID certificate of the owner of a proxy certificate
is (not) revoked.

– R4: Access to contact information is only possible using the Belgian eID.
Adversaries do not have access to the proxy certificates of the contacts.

– R5: All information stored on the remote secure storage server is encrypted
and if the server is trustworthy (i.e. the server does not store the encrypted
tag nor the NRN), an adversary cannot link any data or even discover the
presence of data of a particular individual. Moreover, only the owner can get
access to his encrypted data.

PGP [13] has a different trust model compared to our approach. PGP was ini-
tially based on chains of trust, while our solution is based on valid certificate
chains. The trust level of public keys in PGP depends on the number of signa-
tures on these keys by other users. Verifying the validity of those keys is not
trivial and less reliable. Users have to interpret trust levels themselves. In the
more recent OpenPGP specification [14], trust signatures can be used to support
the creation of certificate authorities.
S/MIME [15] also offers a solution to send confidential messages based on certifi-
cate chains. S/MIME typically stores keys and certificates on a user workstation
which implies that e-mail cannot be sent or retrieved on different hosts. Some
attempts have been made to store keys and certificates for e-mail services on
a remote server. Those solutions mainly use password based encryption to sup-
port ubiquitous access. Our eID based solution provides stronger security while
maximizing the availability.
Moreover, the creation of a BeID proxy certificate does not require a complex
registration procedure. The individual can even create a proxy certificate off-line.
Some certificate authorities offer free e-mail certificates for exclusive S/MIME
usage on their web site. Users must sign up for an account. However, this does
not automatically allow usage of one’s name in the certificate. For that, one has
to prove ones identity in person to at least two Thawte notaries that are part of
their Web of Trust.
PGP and S/MIME also support digital signatures and mechanisms to ensure
the integrity of e-mails. Since the eID card can directly be used to sign e-mail
messages, we have omitted the description of this functionality of our e-mail
client.

12 Extending the Belgian eID technology with mobile security functionality

8 Conclusion

This paper presents two reusable extensions to the Belgian eID technology,
namely a ubiquitously accessible remote secure storage service and a mechanism
to issue proxy certificates. The former allows Belgian citizens to manage sensi-
tive personal data such as contact information, passwords, keys, tickets, etc. The
latter can be used to self-certify asymmetric encryption keys. The validation of
the proxy certificates slightly deviates from the standard, because of the current
design of the eID certificates and restrictions imposed by the Belgian legislation.
However, this problem can easily be solved by redesigning the eID certificates.
Hence, this paper also offers some guidelines for countries that consider intro-
ducing an eID card in the future. As a proof-of-concept, both extensions have
been incorporated in a secure e-mail client. The approach is more secure than
PGP and avoids some key management problems in S/MIME.

Acknowledgements

This research is partially funded by the Interuniversity Attraction Poles Pro-
gramme Belgian State, Belgian Science Policy and the Research Fund K.U.Leuven,
the IWT-SBO project ADAPID and the IWT-Tetra project e-IDea.

References

1. De Cock, D. , Wolf, C., Preneel, B. , The Belgian Electronic Identity Card
(Overview), LNI, vol. P-77, pp. 298–301. Bonner Köllen Verlag (2006)

2. Verhaeghe, P., Lapon, J., De Decker, B., Naessens, V., Verslype, K., Security and
privacy improvements for the belgian eid technology, In: 24th IFIP International
Information Security Conference (SEC), Springer (2009)

3. Dumortier, J., eID en de paradoks van het rijksregisternummer, (2005)
4. Stern, M., Belgian Electronic Identity Card content, 2.2 ed., CSC, Zetes (2003)
5. Andries, P., eID Middleware Architecture Document, 1.0 ed., Zetes (2003)
6. Rommelaere, J., Belgian Electronic Identity Card Middleware Programmers Guide,

1.40 ed., Zetes (2003)
7. Ramlot, G., eID Hierarchy and Certificate Profiles, 3.1 ed., Zetes – Certipost (2006)
8. Belgian certificate revocation list, http://status.eid.belgium.be
9. Tuecke, S., Welch, V., Engert, D., Pearlman, L., Thompson, M., Rfc 3820 - Internet

x.509 public key infrastructure (pki) proxy certificate profile, (2004)
10. Housley, R., Polk, W., Ford, W., Solo, D., Rfc 3280 - Internet x.509 public key

infrastructure certificate (pki) and certificate revocation list (crl) profile, (2002)
11. Shamir, A., How to share a secret, vol. 22, no. 11, pp. 612–613. Commun. ACM

(1979)
12. Bellare, M., Goldwasser, S., Verifiable partial key escrow, In: CCS ’97: Proceedings

of the 4th ACM conference on Computer and communications security, pp. 78–91.
ACM, (1997)

13. Garfinkel, S., PGP: Pretty Good Privacy, O’Reilly Media (1994)
14. Callas, J., Donnerhacke, L., Finney, H., Shaw, D., Thayer, R., Rfc 4880 (Proposed

Standard) – OpenPGP Message Format, (2007)
15. Ramsdell, B., Rfc 2633 – s/mime version 3 message specification, (1999)

