Abstract
Photo-response non-uniformity noise present in output signals of CCD and CMOS sensors has been used as fingerprint to uniquely identify the source digital camera that took the image. The same fingerprint can establish a link between images according to their common source. In this paper, we review the state-of-the-art identification method and discuss its practical issues. In the camera identification task, when formulated as a binary hypothesis test, a decision threshold is set on correlation between image noise and modulated fingerprint. The threshold determines the probability of two kinds of possible errors: false acceptance and missed detection. We will focus on estimation of the false acceptance probability that we wish to keep very low. A straightforward approach involves testing a large number of different camera fingerprints against one image or one camera fingerprint against many images from different sources. Such sampling of the correlation probability distribution is time consuming and expensive while extrapolation of the tails of the distribution is still not reliable. A novel approach is based on cross-correlation analysis and peak-to-correlation-energy ratio.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Khanna, N., Mikkilineni, A.K., Chiu, G.T.C., Allebach, J.P., Delp, E.J.: Forensic Classification of Imaging Sensor Types. In: Proc. SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents IX, San Jose, CA, vol. 6505, pp. 0U–0V (2007)
Gou, H., Swaminathan, A., Wu, M.: Robust Scanner Identification based on Noise Features. In: Proc. SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents IX, San Jose, California, vol. 6505, pp. 0S–0T (2007)
Swaminathan, A., Wu, M., Liu, K.J.R.: Nonintrusive Component Forensics of Visual Sensors Using Output Images. IEEE Transactions on Information Forensics and Security 2(1), 91–106 (2007)
Propescu, A.C., Farid, H.: Statistical Tools for Digital Forensic. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 128–147. Springer, Heidelberg (2004)
Popescu, A.C., Farid, H.: Exposing Digital Forgeries by Detecting Traces of Resampling. IEEE Transactions on Signal Processing 53(2), 758–767 (2005)
Popescu, A.C., Farid, H.: Exposing Digital Forgeries in Color Filter Array Interpolated Images. IEEE Transactions on Signal Processing 53(10), 3948–3959 (2005)
Farid, H.: Exposing Digital Forgeries in Scientific Images. In: Proc. ACM Multimedia & Security Workshop, Geneva, Switzerland, pp. 29–36 (2006)
Popescu, A.C., Farid, H.: Exposing Digital Forgeries by Detecting Duplicated Image Regions. Technical Report, TR2004-515. Dartmouth College, Computer Science (2004)
Lukáš, J., Fridrich, J., Goljan, M.: Digital Camera Identification from Sensor Pattern Noise. IEEE Transactions on Information Forensics and Security 1(2), 205–214 (2006)
Chen, M., Fridrich, J., Goljan, M.: Digital Imaging Sensor Identification (Further Study). In: Proc. SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents IX, San Jose, California, vol. 6505, pp. 0P–0Q (2007)
Goljan, M., Fridrich, J.: Camera Identification from Scaled and Cropped Images. In: Delp, E.J., et al. (eds.) Security, Forensics, Steganography, and Watermarking of Multimedia Contents X, vol. 6819, p. 68190E (2008)
Chen, M., Fridrich, J., Goljan, M., Lukáš, J.: Determining Image Origin and Integrity Using Sensor Noise. IEEE Transactions on Information Security and Forensics 3(1), 74–90 (2008)
Healey, G., Kondepudy, R.: Radiometric CCD Camera Calibration and Noise Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(3), 267–276 (1994)
Mihcak, M.K., Kozintsev, I., Ramchandran, K.: Spatially Adaptive Statistical Modeling of Wavelet Image Coefficients and its Application to Denoising. In: Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Phoenix, Arizona, vol. 6, pp. 3253–3256 (1999)
Lukáš, J., Fridrich, J., Goljan, M.: Determining Digital Image Origin Using Sensor Imperfections. In: Proc. SPIE, Image and Video Communications and Processing, San Jose, California, vol. 5685, pp. 249–260 (2005)
Lukáš, J., Fridrich, J., Goljan, M.: Detecting Digital Image Forgeries Using Sensor Pattern Noise. In: Proc. SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents VIII, San Jose, California, vol. 6072, pp. 0Y1–0Y11 (2006)
Goljan, M., Chen, M., Fridrich, J.: Identifying Common Source Digital Camera From Image Pairs. In: Proc. ICIP 2007, San Antonio, Texas (2007)
Khanna, N., Mikkilineni, A.K., Chiu, G.T.C., Allebach, J.P., Delp, E.J.: Scanner Identification Using Sensor Pattern Noise. In: Proc. SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents IX, San Jose, CA, vol. 6505, pp. 1K–1 (2007)
Sankur, B., Celiktutan, O., Avcibas, I.: Blind Identification of Cell Phone Cameras. In: Proc. SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents IX, San Jose, California, vol. 6505, pp. 1H–1I (2007)
Chen, M., Fridrich, J., Goljan, M.: Source Digital Camcorder Identification Using CCD Photo Response Non-uniformity. In: Proc. SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents IX, San Jose, California, vol. 6505, pp. 1G–1H (2007)
Goljan, M., Fridrich, J., Lukáš, J.: Camera Identification from Printed Images. In: Delp, E.J., et al. (eds.) Security, Forensics, Steganography, and Watermarking of Multimedia Contents X, vol. 6819, p. 68190I (2008)
Dirik, A.E., Sencar, H.T., Husrev, T., Memon, N.: Source Camera Identification Based on Sensor Dust Characteristics. In: Proc. IEEE Workshop on Signal Processing Applications for Public Security and Forensics, Washington, DC, pp. 1–6 (2007)
Choi, K.S., Lam, E.Y., Wong, K.K.Y.: Automatic source camera identification using the intrinsic lens radial distortion. Optics Express 14(24), 1551–1565 (2006)
Bayram, S., Sencar, H.T., Memon, N., Avcibas, I.: Source camera identification based on CFA interpolation. In: Proc. ICIP 2005. IEEE International Conference on Image Processing, pp. 69–72 (2006)
Filler, T., Fridrich, J.: Using Sensor Pattern Noise for Camera Model Identification. In: Proc. ICIP 2008, San Diego, California, pp. 12–15 (2008)
Sutcu, Y., Bayram, S., Sencar, H.T., Memon, N.: Improvements on Sensor Noise Based Source Camera Identification. In: Proc. IEEE, International Conference on Multimedia and Expo, pp. 24–27 (2007)
Kumar, B.V.K.V., Hassebrook, L.: Performance measures for correlation filters. Applied Optics 29(20), 2997–3006 (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Goljan, M. (2009). Digital Camera Identification from Images – Estimating False Acceptance Probability. In: Kim, HJ., Katzenbeisser, S., Ho, A.T.S. (eds) Digital Watermarking. IWDW 2008. Lecture Notes in Computer Science, vol 5450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04438-0_38
Download citation
DOI: https://doi.org/10.1007/978-3-642-04438-0_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04437-3
Online ISBN: 978-3-642-04438-0
eBook Packages: Computer ScienceComputer Science (R0)