Skip to main content

Comparative Analysis of Regression Tree Models for Premises Valuation Using Statistica Data Miner

  • Conference paper
Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems (ICCCI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5796))

Included in the following conference series:

Abstract

Several dozen of experiments were conducted with Statistica Data Miner in order to assess the suitability of different machine learning algorithms for an Internet expert system to assist with real estate appraisal. The investigations concentrated first of all on regression trees and ensemble tree models. Moreover, decision tree approaches were compared with commonly used algorithms as KNN, SVM and a multilayer perceptron neural network. The results provided by the collection of twelve predictive accuracy measures were also analyzed. The study proved the usefulness of majority of algorithms to build the real estate valuation models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees, Wadsworth Int. Group, Belmont (1984)

    Google Scholar 

  2. Torgo, L.: Functional Models for Regression Tree Leaves. In: Proc. 14th International Conference on Machine Learning, pp. 385–393. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  3. Badulescu, L.A., Nicula, A.: Data Mining Decision Trees in Economy. Analele Universitatii din Oradea, Stiinte Economice XVI II, 723–727 (2007)

    Google Scholar 

  4. Giudici, P., Figini, S.: Applied Data Mining for Business and Industry. Wiley, Chichester (2009)

    Book  MATH  Google Scholar 

  5. Trana, V.T., Yanga, B.S., Oha, M.S., Tanb, A.C.C.: Machine condition prognosis based on regression trees and one-step-ahead prediction, Mech. Systems and Signal Process. 22(5), 1179–1193 (2008)

    Article  Google Scholar 

  6. Khoshgoftaar, T.M., Seliya, N.: Tree-based software quality estimation models for fault prediction. In: Proc. 8th IEEE Symp. on Software Metrics, pp. 203–214 (2002)

    Google Scholar 

  7. Wang, X., Dietterich, T.G.: Efficient Value Function Approximation Using Regression Trees. In: Proceedings of the IJCAI Workshop on Statistical Machine Learning for Large-Scale Optimization (1999)

    Google Scholar 

  8. Podgorelec, V., Kokol, P., Stiglic, B., Rozman, I.: Decision trees: an overview and their use in medicine. Journal of Medical Systems 26, 445–463 (2002)

    Article  Google Scholar 

  9. Balac, N., Gaines, D.M., Fisher, D.: Using Regression Trees to Learn Action Models. IEEE Int. Conference on Man and Cybernetics 5, 3378–3383 (2000)

    Google Scholar 

  10. Acciani, C., Fucilli, V., Sardaro, R.: Model Tree: An Application in Real Estate Appraisal, 109th EAAE Seminar, no. 44853, Viterbo (2008)

    Google Scholar 

  11. Gokhale, S.S., Lyu, M.R.: Regression tree modeling for the prediction of software quality. In: Proc. of ISSAT 1997, pp. 31–36 (1997)

    Google Scholar 

  12. Perlich, C., Provost, F., Simonoff, J.S.: Tree induction vs. logistic regression: a learning-curve analysis. J. of Machine Learning Res. 4, 211–255 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Quinlan, J.R.: Learning with Continuous Classes. In: 5th Australian Joint Conference on Artificial Intelligence (AI 1992), Singapore, pp. 343–348 (1992)

    Google Scholar 

  14. Król, D., Lasota, T., Trawiński, B., Trawiński, K.: Investigation of evolutionary optimization methods of TSK fuzzy model for real estate appraisal. International Journal of Hybrid Intelligent Systems 5(3), 111–128 (2008)

    Article  MATH  Google Scholar 

  15. Lasota, T., Pronobis, E., Trawiński, B., Trawiński, K.: Exploration of Soft Computing Models for the Valuation of Residential Premises using the KEEL Tool. In: Nguyen, N.T., et al. (eds.) 1st Asian Conference on Intelligent Information and Database Systems (ACIIDS 2009), pp. 253–258. IEEE, Los Alamitos (2009)

    Chapter  Google Scholar 

  16. Hill, T., Lewicki, P.: Statistics: Methods and Applications. StatSoft, Tulsa (2007)

    Google Scholar 

  17. Breiman, L.: Random Forests. Machine Learning 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  18. Hagquist, C., Stenbeck, M.: Goodness of Fit in Regression Analysis – R2 and G2 Reconsidered. Quality & Quantity 32, 229–245 (1998)

    Article  Google Scholar 

  19. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lasota, T., Sachnowski, P., Trawiński, B. (2009). Comparative Analysis of Regression Tree Models for Premises Valuation Using Statistica Data Miner. In: Nguyen, N.T., Kowalczyk, R., Chen, SM. (eds) Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems. ICCCI 2009. Lecture Notes in Computer Science(), vol 5796. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04441-0_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04441-0_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04440-3

  • Online ISBN: 978-3-642-04441-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics