Skip to main content

Comparative Analysis of Premises Valuation Models Using KEEL, RapidMiner, and WEKA

  • Conference paper
Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems (ICCCI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5796))

Included in the following conference series:

Abstract

The experiments aimed to compare machine learning algorithms to create models for the valuation of residential premises, implemented in popular data mining systems KEEL, RapidMiner and WEKA, were carried out. Six common methods comprising two neural network algorithms, two decision trees for regression, and linear regression and support vector machine were applied to actual data sets derived from the cadastral system and the registry of real estate transactions. A dozen of commonly used performance measures was applied to evaluate models built by respective algorithms. Some differences between models were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alcalá-Fdez, J., Sánchez, L., García, S., del Jesus, M.J., Ventura, S., Garrell, J.M., Otero, J., Romero, C., Bacardit, J., Rivas, V.M., Fernández, J.C., Herrera., F.: KEEL: A Software Tool to Assess Evolutionary Algorithms to Data Mining Problems. Soft Computing 13(3), 307–318 (2009)

    Article  Google Scholar 

  2. González, M.A.S., Formoso, C.T.: Mass appraisal with genetic fuzzy rule-based systems. Property Management 24(1), 20–30 (2006)

    Article  Google Scholar 

  3. Hagquist, C., Stenbeck, M.: Goodness of Fit in Regression Analysis – R2 and G2 Reconsidered. Quality & Quantity 32, 229–245 (1998)

    Article  Google Scholar 

  4. Król, D., Lasota, T., Trawiński, B., Trawiński, K.: Investigation of evolutionary optimization methods of TSK fuzzy model for real estate appraisal. International Journal of Hybrid Intelligent Systems 5(3), 111–128 (2008)

    Article  MATH  Google Scholar 

  5. Lasota, T., Pronobis, E., Trawiński, B., Trawiński, K.: Exploration of Soft Computing Models for the Valuation of Residential Premises using the KEEL Tool. In: Nguyen, N.T., et al. (eds.) 1st Asian Conference on Intelligent Information and Database Systems (ACIIDS 2009), pp. 253–258. IEEE, Los Alamitos (2009)

    Chapter  Google Scholar 

  6. McCluskey, W.J., Anand, S.: The application of intelligent hybrid techniques for the mass appraisal of residential properties. Journal of Property Investment and Finance 17(3), 218–239 (1999)

    Article  Google Scholar 

  7. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: YALE: Rapid Prototyping for Complex Data Mining Tasks. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2006), pp. 935–940 (2006)

    Google Scholar 

  8. Nguyen, N., Cripps, A.: Predicting housing value: A comparison of multiple regression analysis and artificial neural networks. J. of Real Estate Res. 22(3), 3131–3336 (2001)

    Google Scholar 

  9. Soibelman, W.L., González, M.A.S.: A Knowledge Discovery in Databases Framework for Property Valuation. J. of Property Tax Assessment and Admin. 7(2), 77–106 (2002)

    Google Scholar 

  10. Taffese, W.Z.: Case-based reasoning and neural networks for real state valuation. In: Proceedings of the 25th IASTED International Multi-Conference: Artificial Intelligence and Applications, Innsbruck, Austria (2007)

    Google Scholar 

  11. Waller, B.D., Greer, T.H., Riley, N.F.: An Appraisal Tool for the 21st Century: Automated Valuation Models. Australian Property Journal 36(7), 636–641 (2001)

    Google Scholar 

  12. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  13. Worzala, E., Lenk, M., Silva, A.: An Exploration of Neural Networks and Its Application to Real Estate Valuation. J. of Real Estate Res. 10(2), 185–201 (1995)

    Google Scholar 

  14. Wyatt, P.: The development of a GIS-based property information system for real estate valuation. Int. J. Geographical Information Science 111(5), 435–450 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Graczyk, M., Lasota, T., Trawiński, B. (2009). Comparative Analysis of Premises Valuation Models Using KEEL, RapidMiner, and WEKA. In: Nguyen, N.T., Kowalczyk, R., Chen, SM. (eds) Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems. ICCCI 2009. Lecture Notes in Computer Science(), vol 5796. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04441-0_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04441-0_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04440-3

  • Online ISBN: 978-3-642-04441-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics