Skip to main content

Comparative Analysis of Evolutionary Fuzzy Models for Premises Valuation Using KEEL

  • Conference paper
Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems (ICCCI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5796))

Included in the following conference series:

Abstract

The experiments aimed to compare evolutionary fuzzy algorithms to create models for the valuation of residential premises were conducted using KEEL. Out of 20 algorithms divided into 5 groups to final comparison five best were selected. All models were applied to actual data sets derived from the cadastral system and the registry of real estate transactions. A dozen of predictive accuracy measures were employed. Although statistical tests were not decisive, final evaluation of models could be done on the basis of the measures used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alcalá-Fdez, J., Sánchez, L., García, S., del Jesus, M.J., Ventura, S., Garrell, J.M., Otero, J., Romero, C., Bacardit, J., Rivas, V.M., Fernández, J.C., Herrera., F.: KEEL: A Software Tool to Assess Evolutionary Algorithms to Data Mining Problems. Soft Computing 13(3), 307–318 (2009)

    Article  Google Scholar 

  2. Alcalá, R., Alcalá-Fdez, J., Casillas, J., Cordón, O., Herrera, F.: Local identification of prototypes for genetic learning of accurate TSK fuzzy rule-based systems. International Journal of Intelligent Systems 22(9), 909–941 (2007)

    Article  MATH  Google Scholar 

  3. Alcala, R., Cordón, O., Herrera, F.: Combining Rule Weight Learning and Rule Selection to Obtain Simpler and More Accurate Linguistic Fuzzy Models. In: Lawry, J., G. Shanahan, J., L. Ralescu, A. (eds.) Modelling with Words. LNCS, vol. 2873, pp. 44–63. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Carse, B., Fogarty, T.C., Munro, A.: Evolving fuzzy rule based controllers using genetic algorithms. Fuzzy Sets and Systems 80(3), 273–293 (1996)

    Article  Google Scholar 

  5. Casillas, J., Cordón, O., Herrera, F.: COR: A methodology to improve ad hoc data-driven linguistic rule learning methods by inducing cooperation among rules. IEEE Trans. on System, Man and Cybernetics, Part B: Cybernetics 32(4), 526–537 (2002)

    Article  Google Scholar 

  6. Cordón, O., Herrera, F.: A three-stage evolutionary process for learning descriptive and approximate fuzzy logic controller knowledge bases from examples. International Journal of Approximate Reasoning 17(4), 369–407 (1997)

    Article  MATH  Google Scholar 

  7. Cordón, O., Herrera, F.: A Two-Stage Evolutionary Process for Designing TSK Fuzzy Rule-Based Systems. IEEE Trans. on Systems, Man and Cybernetics, Part B: Cybernetics 29(6), 703–715 (1999)

    Article  Google Scholar 

  8. Cordón, O., Herrera, F.: Hybridizing genetic algorithms with sharing scheme and evolution strategies for designing approximate fuzzy rule-based systems. Fuzzy Sets and Systems 118(2), 235–255 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Herrera, F., Lozano, M., Verdegay, J.L.: Tuning Fuzzy Logic Controllers by Genetic Algorithms. International Journal of Approximate Reasoning 12, 299–315 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. González, M.A.S., Formoso, C.T.: Mass appraisal with genetic fuzzy rule-based systems. Property Management 24(1), 20–30 (2006)

    Article  Google Scholar 

  11. Hagquist, C., Stenbeck, M.: Goodness of Fit in Regression Analysis – R2 and G2 Reconsidered. Quality & Quantity 32, 229–245 (1998)

    Article  Google Scholar 

  12. Homaifar, A., McCormick., A.E.: Simultaneous Design of Membership Functions and Rule Sets for Fuzzy Controllers Using Genetic Algorithms. IEEE Trans. on Fuzzy Systems 3(2), 129–139 (1995)

    Article  Google Scholar 

  13. Juang, C.-F., Lin, J.-Y., Lin, C.-T.: Genetic reinforcement learning through symbiotic evolution for fuzzy controller design. IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics 30(2), 290–302 (2000)

    Article  Google Scholar 

  14. Król, D., Lasota, T., Trawiński, B., Trawiński, K.: Investigation of evolutionary optimization methods of TSK fuzzy model for real estate appraisal. International Journal of Hybrid Intelligent Systems 5(3), 111–128 (2008)

    Article  MATH  Google Scholar 

  15. Lasota, T., Pronobis, E., Trawiński, B., Trawiński, K.: Exploration of Soft Computing Models for the Valuation of Residential Premises using the KEEL Tool. In: Hoi, D., Vietnam, Nguyen, N.T., et al. (eds.) 1st Asian Conference on Intelligent Information and Database Systems (ACIIDS 2009), pp. 253–258. IEEE, Los Alamitos (2009)

    Chapter  Google Scholar 

  16. McCluskey, W.J., Anand, S.: The application of intelligent hybrid techniques for the mass appraisal of residential properties. Journal of Property Investment and Finance 17(3), 218–239 (1999)

    Article  Google Scholar 

  17. Nguyen, N., Cripps, A.: Predicting housing value: A comparison of multiple regression analysis and artificial neural networks. J. of Real Estate Res. 22(3), 3131–3336 (2001)

    Google Scholar 

  18. Sánchez., L.: A random sets-based method for identifying fuzzy models. Fuzzy Sets and Systems 98(3), 343–354 (1998)

    Article  MathSciNet  Google Scholar 

  19. Sánchez, L., Couso., I.: Fuzzy random variables-based modeling with GA-P Algorithms. In: Yager, R., Bouchon-Menier, B., Zadeh, L. (eds.) Information, Uncertainty and Fusion, pp. 245–256. Kluwer, Dordrecht (2000)

    Chapter  Google Scholar 

  20. Sánchez, L., Couso., I.: Combining GP operators with SA search to evolve fuzzy rule based classifiers. Information Sciences 136, 175–192 (2001)

    Article  MATH  Google Scholar 

  21. Soibelman, W.L., González, M.A.S.: A Knowledge Discovery in Databases Framework for Property Valuation. Journal of Property Tax Assessment and Admin. 7(2), 77–106 (2002)

    Google Scholar 

  22. Taffese, W.Z.: Case-based reasoning and neural networks for real state valuation. In: Proceedings of the 25th IASTED International Multi-Conference: Artificial Intelligence and Applications, Innsbruck, Austria (2007)

    Google Scholar 

  23. Thrift, P.: Fuzzy logic synthesis with genetic algorithms. In: Proceedings of the Fourth Int. Conference on Genetic Algorithms (ICGA 1991), San Diego, pp. 509–513 (1991)

    Google Scholar 

  24. Waller, B.D., Greer, T.H., Riley, N.F.: An Appraisal Tool for the 21st Century: Automated Valuation Models. Australian Property Journal 36(7), 636–641 (2001)

    Google Scholar 

  25. Wang, L.X., Mendel, J.M.: Generating Fuzzy Rules by Learning from Examples. IEEE Trans. on Systems, Man and Cybernetics 22(6), 1414–1427 (1992)

    Article  MathSciNet  Google Scholar 

  26. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  27. Worzala, E., Lenk, M., Silva, A.: An Exploration of Neural Networks and Its Application to Real Estate Valuation. J. of Real Estate Res. 10(2), 185–201 (1995)

    Google Scholar 

  28. Wyatt, P.: The development of a GIS-based property information system for real estate valuation. Int. J. Geographical Inf. Sci. 111(5), 435–450 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krzystanek, M., Lasota, T., Trawiński, B. (2009). Comparative Analysis of Evolutionary Fuzzy Models for Premises Valuation Using KEEL. In: Nguyen, N.T., Kowalczyk, R., Chen, SM. (eds) Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems. ICCCI 2009. Lecture Notes in Computer Science(), vol 5796. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04441-0_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04441-0_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04440-3

  • Online ISBN: 978-3-642-04441-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics