Abstract
The paper provides an insight into the improved novel metaheuristics of the Firefly Algorithm for constrained continuous optimization tasks. The presented technique is inspired by social behavior of fireflies and the phenomenon of bioluminescent communication. The first part of the paper is devoted to the detailed description of the existing algorithm. Then some suggestions for extending the simple scheme of the technique under consideration are presented. Subsequent sections concentrate on the performed experimental parameter studies and a comparison with existing Particle Swarm Optimization strategy based on existing benchmark instances. Finally some concluding remarks on possible algorithm extensions are given, as well as some properties of the presented approach and comments on its performance in the constrained continuous optimization tasks.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Encyclopædia Britannica: Firefly. In: Encyclopædia Britannica. Ultimate Reference Suite. Encyclopædia Britannica, Chicago (2009)
Babu, B.G., Kannan, M.: Lightning bugs. Resonance 7(9), 49–55 (2002)
Fraga, H.: Firefly luminescence: A historical perspective and recent developments. Journal of Photochemical & Photobiological Sciences 7, 146–158 (2008)
Lewis, S., Cratsley, C.: Flash signal evolution, mate choice, and predation in fireflies. Annual Review of Entomology 53, 293–321 (2008)
Leidenfrost, R., Elmenreich, W.: Establishing wireless time-triggered communication using a firefly clock synchronization approach. In: Proceedings of the 2008 International Workshop on Intelligent Solutions in Embedded Systems, pp. 1–18 (2008)
Jumadinova, J., Dasgupta, P.: Firefly-inspired synchronization for improved dynamic pricing in online markets. In: Proceedings of the 2008 Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems, pp. 403–412 (2008)
Krishnanand, K., Ghose, D.: Glowworm swarm based optimization algorithm for multimodal functions with collective robotics applications. Multiagent and Grid Systems 2(3), 209–222 (2006)
Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)
Eberhart, R.C., Shi, Y.: Computational Intelligence: Concepts to Implementations. Morgan Kaufmann, San Francisco (2007)
Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization 39(3), 459–471 (2007)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, 1995. Proceedings, vol. 4, pp. 1942–1948 (1995)
Schutte, J.F., Groenwold, A.A.: A study of global optimization using particle swarms. Journal of Global Optimization 31(1), 93–108 (2005)
Ingber, L.: Adaptive simulated annealing (ASA): lessons learned. Control & Cybernetics 25(1), 33–55 (1996)
Himmelblau, D.M.: Applied Nonlinear Programming. McGraw-Hill, New York (1972)
Schwefel, H.P.: Numerical Optimization of Computer Models. John Wiley & Sons, Inc., Chichester (1981)
Easom, E.: A survey of global optimization techniques. Master’s thesis, University of Louisville (1990)
Mühlenbein, H., Schomisch, D., Born, J.: The Parallel Genetic Algorithm as Function Optimizer. Parallel Computing 17(6-7), 619–632 (1991)
Griewank, A.: Generalized descent for global optimization. Journal of Optimization Theory and Applications 34, 11–39 (1981)
Rosenbrock, H.H.: State-Space and Multivariable Theory. Thomas Nelson & Sons Ltd. (1970)
Neumaier, A.: Permutation function, http://www.mat.univie.ac.at/~neum/glopt/my_problems.html
Törn, A., Žilinskas, A.: Global Optimization. Springer, Heidelberg (1989)
Shekel, J.: Test functions for multimodal search techniques. In: Proceedings of the 5th Princeton Conference on Infomration Science and Systems, pp. 354–359 (1971)
Jansson, C., Knüppel, O.: Numerical results for a self-validating global optimization method. Technical Report 94.1, Technical University of Hamburg-Harburg (1994)
Bilchev, G., Parmee, I.: Inductive search. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 832–836 (1996)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1998)
Neumaier, A.: Powersum function, http://www.mat.univie.ac.at/~neum/glopt/my_problems.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Łukasik, S., Żak, S. (2009). Firefly Algorithm for Continuous Constrained Optimization Tasks. In: Nguyen, N.T., Kowalczyk, R., Chen, SM. (eds) Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems. ICCCI 2009. Lecture Notes in Computer Science(), vol 5796. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04441-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-04441-0_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04440-3
Online ISBN: 978-3-642-04441-0
eBook Packages: Computer ScienceComputer Science (R0)