Abstract
This paper presents the algorithms and results of the “idiap” team participation to the ImageCLEFmed annotation task in 2008. On the basis of our successful experience in 2007 we decided to integrate two different local structural and textural descriptors. Cues are combined through concatenation of feature vectors and through the Multi-Cue Kernel. The challenge this year was to annotate images coming mainly from classes with only few training examples. We tackled the problem on two fronts: (1) we introduced a further integration strategy using SVM as an opinion maker; (2) we enriched the poorly populated classes adding virtual examples. We submitted several runs considering different combinations of the proposed techniques. The run jointly using the feature concatenation, the confidence-based opinion fusion and the virtual examples ranked first among all submissions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines (and Other Kernel-Based Learning Methods). Cambridge University Press, Cambridge (2004)
Tommasi, T., Orabona, F., Caputo, B.: Discriminative cue integration for medical image annotation. PRL (2008) (in Press)
Lowe, D.G.: Object Recognition from Local Scale-Invariant Features. In: ICCV (1999)
Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. PAMI (2002)
Shyu, C.R., Brodley, C.E., Kak, A.C., Kosaka, A., Aisen, A., Broderick, L.: Local versus global features for content-based image retrieval. CBAIVL (1998)
Müller, H., Deselaers, T., Deserno, T.M., Clough, P., Kim, E., Hersh, W.R.: Overview of the ImageCLEFmed 2006 Medical Retrieval and Medical Annotation Tasks. In: Peters, C., Clough, P., Gey, F.C., Karlgren, J., Magnini, B., Oard, D.W., de Rijke, M., Stempfhuber, M. (eds.) CLEF 2006. LNCS, vol. 4730, pp. 595–608. Springer, Heidelberg (2007)
Lazebnik, S., Schmid, C., Ponce, J.: Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. In: CVPR (2006)
Ahonen, T., Hadid, A., Pietikinen, M.: Face description with local binary patterns: application to face recognition. PAMI (2006)
Zhang, L., Li, S.Z., Yuan, X.T., Xiang, S.M.: Real-time Object Classification in Video Surveillance Based on Appearance Learning. In: CVPR (2007)
Unay, D., Ekin, A., Cetin, M., Jasinschi, R., Ercil, A.: Robustness of Local Binary Patterns in Brain MR Image Analysis. In: EMBS (2007)
Oliver, A., Lladó, X., Freixenet, J., Martí, J.: False Positive Reduction in Mammographic Mass Detection Using Local Binary Patterns. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 286–293. Springer, Heidelberg (2007)
Sanderson, C., Paliwal, K.K.: Identity Verification Using Speech and Face Information. Digital Signal Processing 14, 449–480 (2004)
Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral Grouping Using the Nyström Method. PAMI (2004)
Lehmann, T.M., Schubert, H., Keysers, D., Kohnen, M., Wein, B.B.: The IRMA code for unique classification of medical images. In: SPIE (2003)
Keysers, D., Dahmen, J., Ney, H., Wein, B.B., Lehmann, T.M.: A Statistical Framework for Model-Based Image Retrieval in Medical Applications. J. Electronic Imaging 12, 59–68 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tommasi, T., Orabona, F., Caputo, B. (2009). An SVM Confidence-Based Approach to Medical Image Annotation. In: Peters, C., et al. Evaluating Systems for Multilingual and Multimodal Information Access. CLEF 2008. Lecture Notes in Computer Science, vol 5706. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04447-2_88
Download citation
DOI: https://doi.org/10.1007/978-3-642-04447-2_88
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04446-5
Online ISBN: 978-3-642-04447-2
eBook Packages: Computer ScienceComputer Science (R0)