Skip to main content

A Constructive Neural Network for Evolving a Machine Controller in Real-Time

  • Chapter
Constructive Neural Networks

Part of the book series: Studies in Computational Intelligence ((SCI,volume 258))

Abstract

A novel method is presented to allow a machine controller to evolve while the machine is acting in its environment. The method uses a single spiking neural network with a minimum number of neurons and no initial connections. New connections and neurons are grown by evaluating reward values which can represent either the internal state of the machine or the rating of its task performance. This way the topology and the level of connectivity of the network are kept to a minimum. The method will be applied to a controller for an autonomous mobile robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alnajjar, F., Murase, K.: Self-organization of Spiking Neural Network Generating Autonomous Behavior in a Real Mobile Robot. In: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation, vol. 1, pp. 1134–1139 (2005)

    Google Scholar 

  2. Alnajjar, F., Bin Mohd Zin, I., Murase, K.: A Spiking Neural Network with Dynamic Memory for a Real Autonomous Mobile Robot in Dynamic Environment. In: 2008 International Joint Conference on Neural Networks (2008)

    Google Scholar 

  3. Dauc, E., Henry, F.: Hebbian Learning in Large Recurrent Neural Networks. Movement and Perception Lab, Marseille (2006)

    Google Scholar 

  4. Elizondo, D., Birkenhead, R., Taillard, E.: Generalisation and the Recursive Deterministic Perceptron. In: International Joint Conference on Neural Networks, pp. 1776–1783 (2006)

    Google Scholar 

  5. Elizondo, D., Fiesler, E., Korczak, J.: Non-ontogenetic Sparse Neural Networks. In: International Conference on Neural Networks, vol. 26, pp. 290–295. IEEE, Los Alamitos (1995)

    Google Scholar 

  6. Florian, R.V.: Reinforcement Learning Through Modulation of Spike-timing-dependent Synaptic Plasticity. Neural Computation 19(6), 1468–1502 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fritzke, B.: Fast Learning with Incremental RBF Networks. Neural Processing Letters 1(1), 2–5 (1994)

    Article  Google Scholar 

  8. Fritzke, B.: A Growing Neural Gas Network Learns Topologies. In: Advances in Neural Information Processing Systems, vol. 7, pp. 625–632 (1995)

    Google Scholar 

  9. Gómez, G., Lungarella, M., Hotz, P.E., Matsushita, K., Pfeifer, R.: Simulating Development in a Real Robot: On the Concurrent Increase of Sensory, Motor, and Neural Complexity. In: Proceedings of the Fourth International Workshop on Epigenetic Robotics, pp. 119–122 (2004)

    Google Scholar 

  10. Greenwood, G.W.: Attaining Fault Tolerance through Self-adaption: The Strengths and Weaknesses of Evolvable Hardware Approaches. In: Zurada, J.M., Yen, G.G., Wang, J. (eds.) WCCI 2008. LNCS, vol. 5050, pp. 368–387. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Hebb, D.O.: The Organization of Behaviour: A Neuropsychological Approach. John Wiley & Sons, New York (1949)

    Google Scholar 

  12. Izhikevich, E.M.: Which Model to Use for Cortical Spiking Neurons? IEEE Transactions on Neural Networks 15(5), 1063–1070 (2004)

    Article  Google Scholar 

  13. Izhikevich, E.M.: Solving the Distal Reward Problem through Linkage of STDP and Dopamine Signaling. Cerebral Cortex 10, 1093–1102 (2007)

    Google Scholar 

  14. Jaeger, H.: The “Echo State” Approach to Analysing and Training Recurrent Neural Networks. GMD Report 148, German National Research Institute for Computer Science (2001)

    Google Scholar 

  15. Katic, D.: Leaky-integrate-and-fire und Spike Response Modell. Institut für Technische Informatik, Universität Karlsruhe (2006)

    Google Scholar 

  16. Kohonen, T.: Self-organization and Associative Memory. 3rd printing. Springer, Heidelberg (1989)

    Google Scholar 

  17. Liu, J., Buller, A.: Self-development of Motor Abilities Resulting from the Growth of a Neural Network Reinforced by Pleasure and Tension. In: Proceedings of the 4th International Conference on Development and Learning, pp. 121–125 (2005)

    Google Scholar 

  18. Liu, J., Buller, A., Joachimczak, M.: Self-motivated Learning Agent: Skill-development in a Growing Network Mediated by Pleasure and Tensions. Transactions of the Institute of Systems, Control and Information Engineers 19(5), 169–176 (2006)

    MATH  Google Scholar 

  19. Maass, W., Natschlaeger, T., Markram, H.: Real-time Computing without Stable States: A New Framework for Neural Computation Based on Perturbations. Neural Computation 14(11), 2531–2560 (2002)

    Article  MATH  Google Scholar 

  20. Maes, P., Brooks, R.A.: Learning to Coordinate Behaviors. In: AAAI, pp. 796–802 (1990)

    Google Scholar 

  21. Martinetz, T.M., Schulten, K.J.: A “Neural-Gas” Network Learns Topologies. In: Kohonen, T., Mäkisara, K., Simula, O., Kangas, J. (eds.) Artificial Neural Networks, pp. 397–402 (1991)

    Google Scholar 

  22. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. In: Adaptive Computation and Machine Learning. The MIT Press, Cambridge (2001)

    Google Scholar 

  23. Stanley, K.O., D’Ambrosio, D., Gauci, J.: A Hypercube-Based Indirect Encoding for Evolving Large-Scale Neural Networks. Accepted to appear in Artificial Life journal (2009)

    Google Scholar 

  24. Tajine, M., Elizondo, D.: The Recursive Deterministic Perceptron Neural Network. Neural Networks 11, 1571–1588 (1998)

    Article  Google Scholar 

  25. Vreeken, J.: Spiking Neural Networks, an Introduction. Intelligent Systems Group, Institute for Information and Computing Sciences, Utrecht University (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huemer, A., Elizondo, D., Gongora, M. (2009). A Constructive Neural Network for Evolving a Machine Controller in Real-Time. In: Franco, L., Elizondo, D.A., Jerez, J.M. (eds) Constructive Neural Networks. Studies in Computational Intelligence, vol 258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04512-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04512-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04511-0

  • Online ISBN: 978-3-642-04512-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics