Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 257))

Abstract

The paper proposed to use a Recurrent Neural Network Model (RNNM) for centralized modeling, identification and direct adaptive control of an anaerobic digestion bioprocess, carried out in a fixed bed and a recirculation tank of a wastewater treatment system. The analytical model of the digestion bioprocess represented a distributed parameter system, which is reduced to a lumped system using the orthogonal collocation method, applied in three collocation points plus the recirculation tank. The RNNM learning algorithm is the dynamic backpropagation one. The graphical simulation results of the distributed plant direct and indirect adaptive neural control system, exhibited good convergence and precise reference tracking, outperforming the optimal control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Haykin, S.: Neural Networks, a Comprehensive Foundation, 2nd edn., Section 2.13, 84–89; Section 4.13, 208–213. Prentice-Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  2. Bulsari, A., Palosaari, S.: Application of Neural Networks for System Identification of an Adsorption Column. Neural Computing and Applications 1, 160–165 (1993)

    Article  Google Scholar 

  3. Deng, H., Li, H.X.: Hybrid Intelligence Based Modeling for Nonlinear Distributed Parameter Process with Applications to the Curing Process. IEEE Transactions on Systems, Man and Cybernetics 4, 3506–3511 (2003)

    Google Scholar 

  4. Deng, H., Li, H.X.: Spectral-Approximation-Based Intelligent Modeling for Distributed Thermal Processes. IEEE Transactions on Control Systems Technology 13, 686–700 (2005)

    Article  Google Scholar 

  5. Gonzalez-Garcia, R., Rico-Martinez, R., Kevrekidis, I.: Identification of Distributed Parameter Systems: A Neural Net Based Approach. Computers and Chemical Engineering 22(4-suppl. 1), 965–968 (1998)

    Article  Google Scholar 

  6. Padhi, R., Balakrishnan, S., Randolph, T.: Adaptive Critic based Optimal Neuro-Control Synthesis for Distributed Parameter Systems. Automatica 37, 1223–1234 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Padhi, R., Balakrishnan, S.: Proper Orthogonal Decomposition Based Optimal Neurocontrol Synthesis of a Chemical Reactor Process Using Approximate Dynamic Programming. Neural Networks 16, 719–728 (2003)

    Article  Google Scholar 

  8. Pietil, S., Koivo, H.N.: Centralized and Decentralized Neural Network Models for Distributed Parameter Systems. In: Proc. of the Symposium on Control, Optimization and Supervision, CESA 1996. IMACS Multiconference on Computational Engineering in Systems Applications, Lille, France, pp. 1043–1048 (1996)

    Google Scholar 

  9. Baruch, I.S., Mariaca-Gaspar, C.R., Barrera-Cortes, J.: Recurrent Neural Network Identification and Adaptive Neural Control of Hydrocarbon Biodegradation Processes. In: Hu, X., Balasubramaniam, P. (eds.) Recurrent Neural Networks, ch. 4, pp. 61–88. I-Tech Education and Publishing KG, Vienna (2008)

    Google Scholar 

  10. Baruch, I.S., Flores, J.M., Nava, F., Ramirez, I.R., Nenkova, B.: An Advanced Neural Network Topology and Learning, Applied for Identification and Control of a D.C. Motor. In: Proc. 1st International IEEE Symposium on Intelligent Systems, IS 2002, Varna, Bulgaria, vol. 1, pp. 289–295 (2002)

    Google Scholar 

  11. Baruch, I.S., Georgieva, P., Barrera-Cortes, J., Feyo de Azevedo, S.: Adaptive Recurrent Neural Network Control of Biological Wastewater Treatment (Special Issue on Soft Computing for Modeling, Simulation and Control of Nonlinear Dynamical Systems, Guest Eds: Castillo, O., Melin, P.) 20(2), 173–194 (2005)

    MATH  Google Scholar 

  12. Baruch, I.S., Flores, J.M., Thomas, F., Garrido, R.: Adaptive Neural Control of Nonlinear Systems. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, pp. 930–936. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Baruch, I.S., Barrera-Cortes, J., Hernandez, L.A.: A Fed-Batch Fermentation Process Identification and Direct Adaptive Neural Control with Integral Term. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 764–773. Springer, Heidelberg (2004)

    Google Scholar 

  14. Aguilar-Garnica, E., Alcaraz-Gonzalez, V., Gonzalez-Alvarez, V.: Interval Observer Design for an Anaerobic Digestion Process Described by a Distributed Parameter Model. In: Proc. of the Second International Meeting on Environmental Biotechnology and Engineering (2IMEBE), Mexico City, Mexico, 26-29 September, paper 117, pp. 1–16 (2006)

    Google Scholar 

  15. Wan, E., Beaufays, F.: Diagrammatic Method for Deriving and Relating Temporal Neural Networks Algorithms. Neural Computations 8, 182–201 (1996)

    Article  Google Scholar 

  16. Young, K.D., Utkin, V.I., Ozguner, U.: A Control Engineer’s Guide to Sliding Mode Control. IEEE Transactions on Control Systems Technology 7(3), 328–342 (1999)

    Article  Google Scholar 

  17. Levent, A.: Higher Order Sliding Modes, Differentiation and Output Feedback Control. International Journal of Control, Special Issue Dedicated to Vadim Utkin on the Occasion of his 65th Birthday (Guest editor: Leonid M. Fridman) 76(9/10), 924–941 (2003)

    Google Scholar 

  18. Eduards, C., Spurgeon, S.K., Hebden, R.G.: On the Design of Sliding Mode Output Feedback Controllers International Journal of Control. Special Issue Dedicated to Vadim Utkin on the Occasion of his 65th Birthday (Guest editor: Leonid M. Fridman) 76(9/10), 893–905 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baruch, I.S., Galvan-Guerra, R. (2009). Centralized Direct and Indirect Neural Control of Distributed Parameter Systems. In: Castillo, O., Pedrycz, W., Kacprzyk, J. (eds) Evolutionary Design of Intelligent Systems in Modeling, Simulation and Control. Studies in Computational Intelligence, vol 257. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04514-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04514-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04513-4

  • Online ISBN: 978-3-642-04514-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics