Abstract
The paper proposed to use a Recurrent Neural Network Model (RNNM) for centralized modeling, identification and direct adaptive control of an anaerobic digestion bioprocess, carried out in a fixed bed and a recirculation tank of a wastewater treatment system. The analytical model of the digestion bioprocess represented a distributed parameter system, which is reduced to a lumped system using the orthogonal collocation method, applied in three collocation points plus the recirculation tank. The RNNM learning algorithm is the dynamic backpropagation one. The graphical simulation results of the distributed plant direct and indirect adaptive neural control system, exhibited good convergence and precise reference tracking, outperforming the optimal control.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Haykin, S.: Neural Networks, a Comprehensive Foundation, 2nd edn., Section 2.13, 84–89; Section 4.13, 208–213. Prentice-Hall, Upper Saddle River (1999)
Bulsari, A., Palosaari, S.: Application of Neural Networks for System Identification of an Adsorption Column. Neural Computing and Applications 1, 160–165 (1993)
Deng, H., Li, H.X.: Hybrid Intelligence Based Modeling for Nonlinear Distributed Parameter Process with Applications to the Curing Process. IEEE Transactions on Systems, Man and Cybernetics 4, 3506–3511 (2003)
Deng, H., Li, H.X.: Spectral-Approximation-Based Intelligent Modeling for Distributed Thermal Processes. IEEE Transactions on Control Systems Technology 13, 686–700 (2005)
Gonzalez-Garcia, R., Rico-Martinez, R., Kevrekidis, I.: Identification of Distributed Parameter Systems: A Neural Net Based Approach. Computers and Chemical Engineering 22(4-suppl. 1), 965–968 (1998)
Padhi, R., Balakrishnan, S., Randolph, T.: Adaptive Critic based Optimal Neuro-Control Synthesis for Distributed Parameter Systems. Automatica 37, 1223–1234 (2001)
Padhi, R., Balakrishnan, S.: Proper Orthogonal Decomposition Based Optimal Neurocontrol Synthesis of a Chemical Reactor Process Using Approximate Dynamic Programming. Neural Networks 16, 719–728 (2003)
Pietil, S., Koivo, H.N.: Centralized and Decentralized Neural Network Models for Distributed Parameter Systems. In: Proc. of the Symposium on Control, Optimization and Supervision, CESA 1996. IMACS Multiconference on Computational Engineering in Systems Applications, Lille, France, pp. 1043–1048 (1996)
Baruch, I.S., Mariaca-Gaspar, C.R., Barrera-Cortes, J.: Recurrent Neural Network Identification and Adaptive Neural Control of Hydrocarbon Biodegradation Processes. In: Hu, X., Balasubramaniam, P. (eds.) Recurrent Neural Networks, ch. 4, pp. 61–88. I-Tech Education and Publishing KG, Vienna (2008)
Baruch, I.S., Flores, J.M., Nava, F., Ramirez, I.R., Nenkova, B.: An Advanced Neural Network Topology and Learning, Applied for Identification and Control of a D.C. Motor. In: Proc. 1st International IEEE Symposium on Intelligent Systems, IS 2002, Varna, Bulgaria, vol. 1, pp. 289–295 (2002)
Baruch, I.S., Georgieva, P., Barrera-Cortes, J., Feyo de Azevedo, S.: Adaptive Recurrent Neural Network Control of Biological Wastewater Treatment (Special Issue on Soft Computing for Modeling, Simulation and Control of Nonlinear Dynamical Systems, Guest Eds: Castillo, O., Melin, P.) 20(2), 173–194 (2005)
Baruch, I.S., Flores, J.M., Thomas, F., Garrido, R.: Adaptive Neural Control of Nonlinear Systems. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, pp. 930–936. Springer, Heidelberg (2001)
Baruch, I.S., Barrera-Cortes, J., Hernandez, L.A.: A Fed-Batch Fermentation Process Identification and Direct Adaptive Neural Control with Integral Term. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 764–773. Springer, Heidelberg (2004)
Aguilar-Garnica, E., Alcaraz-Gonzalez, V., Gonzalez-Alvarez, V.: Interval Observer Design for an Anaerobic Digestion Process Described by a Distributed Parameter Model. In: Proc. of the Second International Meeting on Environmental Biotechnology and Engineering (2IMEBE), Mexico City, Mexico, 26-29 September, paper 117, pp. 1–16 (2006)
Wan, E., Beaufays, F.: Diagrammatic Method for Deriving and Relating Temporal Neural Networks Algorithms. Neural Computations 8, 182–201 (1996)
Young, K.D., Utkin, V.I., Ozguner, U.: A Control Engineer’s Guide to Sliding Mode Control. IEEE Transactions on Control Systems Technology 7(3), 328–342 (1999)
Levent, A.: Higher Order Sliding Modes, Differentiation and Output Feedback Control. International Journal of Control, Special Issue Dedicated to Vadim Utkin on the Occasion of his 65th Birthday (Guest editor: Leonid M. Fridman) 76(9/10), 924–941 (2003)
Eduards, C., Spurgeon, S.K., Hebden, R.G.: On the Design of Sliding Mode Output Feedback Controllers International Journal of Control. Special Issue Dedicated to Vadim Utkin on the Occasion of his 65th Birthday (Guest editor: Leonid M. Fridman) 76(9/10), 893–905 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Baruch, I.S., Galvan-Guerra, R. (2009). Centralized Direct and Indirect Neural Control of Distributed Parameter Systems. In: Castillo, O., Pedrycz, W., Kacprzyk, J. (eds) Evolutionary Design of Intelligent Systems in Modeling, Simulation and Control. Studies in Computational Intelligence, vol 257. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04514-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-04514-1_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04513-4
Online ISBN: 978-3-642-04514-1
eBook Packages: EngineeringEngineering (R0)