Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 5464))

Abstract

The current data network scenario makes Traffic Engineering (TE) a very challenging task. The ever growing access rates and new applications running on end-hosts result in more variable and unpredictable traffic patterns. By providing origin-destination (OD) pairs with several possible paths, load-balancing has proven itself an excellent tool to face this uncertainty. Most previous proposals defined the load-balancing problem as minimizing a certain network cost function of the link’s usage, assuming users would obtain a good performance as a consequence. Since the network operator is interested in the communication between the OD nodes, we propose instead to state the load-balancing problem in their terms. We define a certain utility function of the OD’s perceived performance and maximize the sum over all OD pairs. The solution to the resulting optimization problem can be obtained by a distributed algorithm, whose design we outline. By means of extensive simulations with real networks and traffic matrices, we show that our approach results in more available bandwidth for OD pairs and a similar or decreased maximum link utilization than previously proposed load-balancing schemes. Packet-level simulations verify the algorithm’s good performance in the presence of delayed and inexact measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Elwalid, A., Jin, C., Low, S., Widjaja, I.: MATE: MPLS adaptive traffic engineering. In: INFOCOM 2001, vol. 3, pp. 1300–1309 (2001)

    Google Scholar 

  2. Kandula, S., Katabi, D., Davie, B., Charny, A.: Walking the tightrope: responsive yet stable traffic engineering. In: ACM SIGCOMM 2005, pp. 253–264 (2005)

    Google Scholar 

  3. Fischer, S., Kammenhuber, N., Feldmann, A.: Replex: dynamic traffic engineering based on wardrop routing policies. In: CoNEXT 2006, pp. 1–12 (2006)

    Google Scholar 

  4. Srikant, R.: The Mathematics of Internet Congestion Control, Birkhäuser Boston (2003)

    Google Scholar 

  5. Uhlig, S., Quoitin, B., Lepropre, J., Balon, S.: Providing public intradomain traffic matrices to the research community. SIGCOMM Comput. Commun. Rev. 36(1), 83–86 (2006)

    Article  Google Scholar 

  6. Duffield, N.G., Goyal, P., Greenberg, A., Mishra, P., Ramakrishnan, K.K., van der Merwe, J.E.: Resource management with hoses: point-to-cloud services for virtual private networks. IEEE/ACM Trans. Netw. 10(5), 679–692 (2002)

    Article  Google Scholar 

  7. Zhang, C., Kurose, J., Towsley, D., Ge, Z., Liu, Y.: Optimal routing with multiple traffic matrices tradeoff between average and worst case performance. In: ICNP 2005 (November 2005)

    Google Scholar 

  8. Ben-Ameur, W., Kerivin, H.: Routing of uncertain traffic demands. Optimization and Engineering 6(3), 283–313 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Juva, I.: Robust load balancing. In: IEEE GLOBECOM 2007, November 26-30, pp. 2708–2713 (2007)

    Google Scholar 

  10. Casas, P., Fillatre, L., Vaton, S.: Robust and Reactive Traffic Engineering for Dynamic Traffic Demands. In: NGI 2008 (April 2008)

    Google Scholar 

  11. Wang, W.-H., Palaniswami, M., Low, S.H.: Optimal flow control and routing in multi-path networks. Perform. Eval. 52(2-3), 119–132 (2003)

    Article  Google Scholar 

  12. Kelly, F., Voice, T.: Stability of end-to-end algorithms for joint routing and rate control. SIGCOMM Comput. Commun. Rev. 35(2), 5–12 (2005)

    Article  Google Scholar 

  13. Han, H., Shakkottai, S., Hollot, C.V., Srikant, R., Towsley, D.: Multi-path tcp: a joint congestion control and routing scheme to exploit path diversity in the internet. IEEE/ACM Trans. Netw. 14(6), 1260–1271 (2006)

    Article  Google Scholar 

  14. Paganini, F.: Congestion control with adaptive multipath routing based on optimization. In: 40th Annual Conference on Information Sciences and Systems (March 2006)

    Google Scholar 

  15. Key, P., Massoulie, L., Towsley, D.: Path selection and multipath congestion control. In: IEEE INFOCOM 2007, May 2007, pp. 143–151 (2007)

    Google Scholar 

  16. He, J., Bresler, M., Chiang, M., Rexford, J.: Towards robust multi-layer traffic engineering: Optimization of congestion control and routing. IEEE Journal on Selected Areas in Communications 25(5), 868–880 (2007)

    Article  Google Scholar 

  17. Bonald, T., Massoulié, L.: Impact of fairness on internet performance. ACM SIGMETRICS 2001, 82–91 (2001)

    Google Scholar 

  18. Mo, J., Walrand, J.: Fair end-to-end window-based congestion control. IEEE/ACM Trans. Netw. 8(5), 556–567 (2000)

    Article  Google Scholar 

  19. Kelly, F., Maulloo, A., Tan, D.: Rate control in communication networks: shadow prices, proportional fairness and stability. Journal of the Operational Research Society 49 (1998)

    Google Scholar 

  20. Bonald, T., Massoulié, L., Proutière, A., Virtamo, J.: A queueing analysis of max-min fairness, proportional fairness and balanced fairness. Queueing Syst. Theory Appl. 53(1-2), 65–84 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bonald, T., Proutière, A.: On performance bounds for balanced fairness. Perform. Eval. 55(1-2), 25–50 (2004)

    Article  MATH  Google Scholar 

  22. Pappalardo, M.: On the duality gap in nonconvex optimization. Math. Oper. Res. 11(1) (1986)

    Google Scholar 

  23. Minoux, M.: Programmation Mathématique: théorie et algorithmes, Dunod (1983)

    Google Scholar 

  24. The Abilene Network, http://www.internet2.edu/network/

  25. TOTEM: TOolbox for Traffic Engineering Methods, http://totem.info.ucl.ac.be/

  26. Zhang, Y.: Abilene Dataset, http://www.cs.utexas.edu/~yzhang/research/AbileneTM/

  27. Géant Topology Map, http://www.geant.net

  28. The Network Simulator - ns, http://nsnam.isi.edu/nsnam/index.php/Main_Page

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Larroca, F., Rougier, JL. (2009). A Fair and Dynamic Load-Balancing Mechanism. In: Valadas, R., Salvador, P. (eds) Traffic Management and Traffic Engineering for the Future Internet. FITraMEn 2008. Lecture Notes in Computer Science, vol 5464. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04576-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04576-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04575-2

  • Online ISBN: 978-3-642-04576-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics