Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 259))

Abstract

Interest on artificial neural networks (ANN) in infrastructure materials research and practice has increased in recent years. This chapter presents a review of ANN applications in characterization of infrastructure materials focusing on portland cement concrete (PCC) and asphalt concrete (AC) materials. The principles of ANN are briefly introduced and summarized. The strengths and limitations of ANN for modeling behavior of infrastructure materials are discussed. Various applications of the ANN approach in infrastructure materials testing, analysis and design problems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adeli, H., Hung, S.L.: Machine learning: neural networks, genetic algorithms, and fuzzy systems. Wiley, New York (1995)

    MATH  Google Scholar 

  • Adeli, H.: Neural networks in civil engineering: 1989-2000. Computer-Aided Civil and Infrastructure Engineering 16, 126–142 (2001)

    Article  Google Scholar 

  • Aleksander, I., Morton, H.: An introduction to neural computing. Van Nostrand Reinhold Co., New York (1990)

    Google Scholar 

  • Andrei, D., Witczak, M.W., Mirza, M.W.: Development of a revised predictive model for the dynamic (complex) modulus of asphalt mixtures. NCHRP 1-37 A Inter Team Report, University of Maryland, College Park, Maryland (1999)

    Google Scholar 

  • Asphalt Institute, The asphalt handbook. MS-4, Lexington, KY (1989)

    Google Scholar 

  • Asphalt Institute, Superpave mix design. SP-2, Lexington, KY (2001)

    Google Scholar 

  • Bari, J., Witczak, M.W.: Development of a new revised version of the Witczak E* predictive model for hot mix asphalt mixtures. Journal of the Association of Asphalt Paving Technologists 75, 381–424 (2006)

    Google Scholar 

  • Bai, J., Wild, S., Ware, J.A., Sabir, B.B.: Using neural networks to predict workability of concrete incorporating metakaolin and fly ash. Advances in Engineering Software 34, 663–669 (2003)

    Article  Google Scholar 

  • Basma, A.A., Barakat, S., Al-Oraimi, S.: Prediction of cement degree of hydration using artificial neural networks. ACI Materials Journal 96(2), 167–172 (1999)

    Google Scholar 

  • Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press Inc., New York (1995)

    Google Scholar 

  • Ceylan, H., Kim, S., Gopalakrishnan, K.: Hot mix asphalt dynamic modulus prediction models using neural network approach. In: Dagli, C.H. (ed.) Intelligent Engineering Systems through Artificial Neural Networks, Proceedings of the ANNIE 2007, vol. 17, pp. 117–124. American Society of Mechanical Engineers (2007)

    Google Scholar 

  • Ceylan, H., Gopalakrishnan, K., Kim, S.: Advanced approaches to hot-mix asphalt dynamic modulus prediction. Canadian Journal of Civil Engineering 35(7), 699–707 (2008)

    Article  Google Scholar 

  • Ceylan, H., Schwartz, C.W., Kim, S., Gopalakrishnan, K.: Accuracy of predictive models for dynamic modulus of hot mix asphalt. ASCE Journal of Materials in Civil Engineering 21(6), 286–293 (2009)

    Article  Google Scholar 

  • Christensen, D.W., Pellinen, T., Bonaquist, R.F.: Hirsch model for estimating the modulus of asphalt concrete. Journal of the Association of Asphalt Paving Technologists 72, 97–121 (2003)

    Google Scholar 

  • Commuri, S., Zaman, M.: A novel neural network-based asphalt compaction analyzer. International Journal of Pavement Engineering 9(3), 177–188 (2008)

    Article  Google Scholar 

  • Dias, W.P.S., Pooliyadda, S.P.: Neural networks for predicting properties of concretes with admixtures. Construction and Building Materials 15(7), 371–379 (2001)

    Article  Google Scholar 

  • El-Chabib, H., Nehdi, M., Sonebi, M.: Artificial intelligence model for flowable concrete mixtures used in underwater construction and repair. ACI Materials Journal 100(2), 165–173 (2003)

    Google Scholar 

  • Fahlman, S.E., Lebiere, C.: The cascade-correlation learning architecture. Rep. CMU-CS-90-100. Carnegie Mellon Univ., Pittsburgh (1990)

    Google Scholar 

  • Fausett, L.V.: Fundamentals of neural networks, 1st edn. Prentice-Hall, NJ (1994)

    MATH  Google Scholar 

  • Fazel Zarandi, M.H., Türksen, I.B., Sobhani, J., Ramezanianpour, A.A.: Fuzzy polynomial neural networks for approximation of the compressive strength of concrete. Applied Soft Computing 8(1), 488–498 (2008)

    Article  Google Scholar 

  • Fletcher, P., Coveney, P.: Prediction of thickening times of oil field cements using artificial neural networks and fourier transform infrared spectroscopy. Advanced Cement Based Materials 2(1), 21–29 (1995)

    Google Scholar 

  • Ghaboussi, J., Garrett Jr., J.H., Wu, X.: Knowledge-Based Modeling of Material Behavior with Neural Networks. ASCE J. Engrg. Mech. 117(1), 132–153 (1991)

    Article  Google Scholar 

  • Gupta, R., Kewalramani, M.A., Goel, A.: Prediction of concrete strength using neural-expert System. ASCE J. Mat. in Civ. Engrg. 18(3), 462–466 (2006)

    Article  Google Scholar 

  • Haj-Ali, R.M., Kurtis, K.E., Sthapit, A.R.: Neural network modeling of concrete expansion during long-term sulfate exposure. ACI Materials Journal 98(1), 36–43 (2001)

    Google Scholar 

  • Haykin, S.: Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall, Upper Saddle River (1998)

    Google Scholar 

  • Hegazy, T., Fazio, P., Moselhi, O.: Developing practical neural network applications using backpropagation. Microcomputers in Civil Engineering 9(2), 145–159 (1994)

    Google Scholar 

  • Hejazi, S.M., Abtahi, S.M., Sheikhzadeh, M., Semnani, D.: Introducing two simple models for predicting fiber-reinforced asphalt concrete behavior during longitudinal loads. Journal of Applied Polymer Science 109(5), 2872–2881 (2008)

    Article  Google Scholar 

  • Ji-Zong, W., Hong-Guang, H., Jin-Jun, H.: The application of automatic acquisition of knowledge to mix design of concrete. Cem. Concr. Res. 29(12), 1875–1880 (1999)

    Article  Google Scholar 

  • Kasperkiewicz, J., Racz, J., Dubrawski, A.: HPC strength prediction using artificial neural network. ASCE J. Comp. in Civ. Engrg. 9(4), 279–284 (1995)

    Article  Google Scholar 

  • Kasperkiewicz, J.: The applications of ANNs in certain materials-analysis problems. Journal of Materials Processing Technology 106, 74–79 (2000)

    Article  Google Scholar 

  • Kewalramani, M.A., Gupta, R.: Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks. Automation in Construction 15(3), 374–379 (2006)

    Article  Google Scholar 

  • Kim, D.K., Lee, J.J., Lee, J.H., Chang, S.K.: Application of probabilistic neural networks for prediction of concrete strength. ASCE J. Mat. in Civ. Engrg. 17(3), 353–362 (2005)

    Article  Google Scholar 

  • Kim, J.I., Kim, D.K., Feng, M.Q., Yazdani, F.: Application of neural networks for estimation of concrete strength. ASCE J. Mat. in Civ. Engrg. 16(3), 257–264 (2004)

    Article  Google Scholar 

  • Kosmatka, S.H., Kerkhoff, B., Panarese, W.C.: Design and control of concrete mixtures, 14th edn. Portland Cement Association, Skokie (2002)

    Google Scholar 

  • Kutay, M.E., Arambula, E., Gibson, N., Youtcheff, J., Petros, K.: Use of artificial neural networks to detect aggregates in poor-quality X-ray CT images of asphalt concrete. In: Roesler, J.R., Bahia, H.U., Al-Qadi, I.L., Murrell, S.D. (eds.) Airfield and highway pavements: efficient pavements supporting transportation’s future, Proceedings of the 2008 Airfield and Highway Pavements Conference, Bellevue, Washington, pp. 40–51 (2008)

    Google Scholar 

  • Lai, S., Serra, M.: Concrete strength prediction by means of neural network. Construction and Building Materials 11(2), 93–98 (1997)

    Article  Google Scholar 

  • Lee, S.C.: Prediction of concrete strength using artificial neural networks. Engineering Structures 25(7), 849–857 (2003)

    Article  Google Scholar 

  • Livingstone, D.J., Manallack, D.T., Tetko, I.V.: Data modelling with neural networks: Advantages and limitations. Journal of Computer-Aided Molecular Design 11(2), 135–142 (1997)

    Article  Google Scholar 

  • Mehra, P., Wah, B.W.: Artificial neural networks: concepts and theory. IEEE Computer Society Press, Los Alamitos (1992)

    MATH  Google Scholar 

  • Mehrotra, K., Mohan, C.K., Ranka, S.: Elements of artificial neural networks. MIT Press, Cambridge (1997)

    Google Scholar 

  • Michon, L., Hanquet, B., Diawara, B., Martin, D., Planche, J.P.: Asphalt study by neuronal networks correlation between chemical and rheological properties. Energy Fuels 11(6), 1188–1193 (1997)

    Article  Google Scholar 

  • Mukherjee, A., Nag Biswas, S.: Artificial neural networks in prediction of mechanical behavior of concrete at high temperature. Nuclear engineering and design 178(1), 1–11 (1997)

    Article  Google Scholar 

  • NCHRP, Guide for mechanistic-empirical design of new and rehabilitated pavement structures. National Cooperative Highway Research Program 1-37 A Project Report, Transportation Research Board, National Research Council, Washington DC (2004)

    Google Scholar 

  • Nehdi, M., Djebbar, Y., Khan, A.: Neural network model for preformed-foam cellular concrete. ACI Materials Journal 98(5), 402–409 (2001a)

    Google Scholar 

  • Nehdi, M., Chabib, H.E., Naggar, M.H.E.: Predicting performance of self-compacting concrete mixtures using artificial neural networks. ACI Materials Journal 98(5), 394–401 (2001b)

    Google Scholar 

  • Ni, H.-G., Wang, J.-Z.: Prediction of compressive strength of concrete by neural networks. Cement and Concrete Research 30(8), 1245–1250 (2000)

    Article  Google Scholar 

  • Oh, J., Lee, I., Kim, J., Lee, G.: Applications of neural networks for proportioning of concrete mixes. ACI Mater. J. 96(1), 51–59 (1999)

    Google Scholar 

  • Ozsahin, T.S., Oruc, S.: Neural network model for resilient modulus of emulsified asphalt mixtures. Construction and Building Materials 22(7), 1436–1445 (2008)

    Article  Google Scholar 

  • ÖztaÅŸ, A., Pala, M., Özbay, E., Kanca, E., Çagľar, N., Bhatti, M.A.: Predicting the compressive strength and slump of high strength concrete using neural network. Construction and Building Materials 20(9), 769–775 (2006)

    Article  Google Scholar 

  • Pala, M., Özbay, E., ÖztaÅŸ, A., Yuce, M.I.: Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks. Construction and Building Materials 21(2), 384–394 (2007)

    Article  Google Scholar 

  • Parichatprecha, R., Nimityongskul, P.: Analysis of durability of high performance concrete using artificial neural networks. Construction and Building Materials 23(2), 910–917 (2009)

    Article  Google Scholar 

  • Park, K.B., Noguchi, T., Plawsky, J.: Modeling of hydration reactions using neural networks to predict the average properties of cement paste. Cement and Concrete Research 35(9), 1676–1684 (2005)

    Article  Google Scholar 

  • Peng, J., Li, J., Ma, B.: Neural network analysis of chloride diffusion in concrete. ASCE J. Mat. in Civ. Engrg. 14(4), 327–333 (2002)

    Article  Google Scholar 

  • Prasad, B.K.R., Eskandari, H., Reddy, B.V.V.: Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN. Construction and Building Materials 23(1), 117–128 (2009)

    Article  Google Scholar 

  • Rafiq, M.Y., Bugmann, G., Easterbrook, D.J.: Neural network design for engineering applications. Computers & Structures 79(17), 1541–1552 (2001)

    Article  Google Scholar 

  • Sakhaei Far, M.S., Underwood, B.S., Kim, R.: Application of artificial neural networks for estimating dynamic modulus of asphalt concrete. Paper #09-3799, Proceedings of Transportation Research Board Annual Meeting, Transportation Research Board, National Research Council, Washington DC (2009)

    Google Scholar 

  • Sebastiá, M., Fernández Olmo, I., Irabien, A.: Neural network prediction of unconfined compressive strength of coal fly ash–cement mixtures. Cement and Concrete Research 33(8), 1137–1146 (2003)

    Article  Google Scholar 

  • Sergio, L., Mauro, S.: Concrete strength prediction by means of neural network. Constr. Build. Mater. 11(2), 93–98 (1997)

    Article  Google Scholar 

  • Shahin, M.A., Jaksa, M.B., Maier, H.R.: Artificial neural network applications in geotechnical engineering. Australian Geomechanics 36(1), 49–62 (2001)

    Google Scholar 

  • Specht, L.P., Khatchatourian, O., Brito, L.A.T., Ceratti, J.A.P.: Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks. Materials Research 10(1), 69–74 (2007)

    Article  Google Scholar 

  • Stegemann, J.A., Buenfeld, N.R.: Neural network modelling of the effects of inorganic impurities on calcium aluminate cement setting. Advances in Cement Research 13(3), 101–114 (2001)

    Google Scholar 

  • Swingler, K.: Applying neural networks: a practical guide. Academic Press, London (1996)

    Google Scholar 

  • Tarefder, R.A., White, L., Zaman, M.: Neural network model for asphalt concrete permeability. ASCE Journal of Materials in Civil Engineering 17, 19–27 (2005)

    Article  Google Scholar 

  • Topçu, Ä°.B., Sarıdemir, M.: Prediction of properties of waste AAC aggregate concrete using artificial neural network. Computational Materials Science 41(1), 117–125 (2007)

    Article  Google Scholar 

  • Topçu, Ä°.B., Sarıdemir, M.: Prediction of rubberized concrete properties using artificial neural network and fuzzy logic. Construction and Building Materials 22(4), 532–540 (2008)

    Article  Google Scholar 

  • Topçu, Ä°.B., Karakurt, C., Sarıdemira, M.: Predicting the strength development of cements produced with different pozzolans by neural network and fuzzy logic. Materials & Design 29(10), 1986–1991 (2008)

    Article  Google Scholar 

  • Topping, B.H.V., Bahreininejad, A.: Neural computing for structural mechanics. Saxe-Coburg Publications, Edinburgh (1997)

    Google Scholar 

  • TRB Circular. Use of artificial neural networks in geomechanical and pavement systems. Number E-C012. Transportation Research Board, National Research Council, Washington DC (1999)

    Google Scholar 

  • Tsoukalas, L.H., Uhrig, R.E.: Fuzzy and neural approaches in engineering. Wiley, New York (1997)

    Google Scholar 

  • Tu, J.V.: Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 49(11), 1225–1231 (1996)

    Article  Google Scholar 

  • Uomoto, T., Ohya, T., Tsutsumi, T.: Development of new concrete mixing system using neural network. In: Proceedings of the CONSEC Conference, pp. 282–290 (1998)

    Google Scholar 

  • Ukrainczyk, N., Ukrainczyk, V.: A neural network method for analysing concrete durability. Magazine of Concrete Research 60(7), 475–486 (2008)

    Article  Google Scholar 

  • Wilson, J.D., Koltz, L.D., Nagaraj, C.: Automated measurement of aggregate indices of shape. Report FHWA-RD-95-116. FHWA, U.S. Department of Transportation, Washington DC (1995)

    Google Scholar 

  • Wittmann, F.H., Martinola, G.: Optimization of concrete properties by neural networks. In: Dhir, R.K., Jones, M.R. (eds.) Concrete 2000-economic and durable construction through excellence, Proceedings of the International Conference, Dundee, E &FN Spon, London, pp. 1889–1898 (1993)

    Google Scholar 

  • Wu, X., Garrett Jr., J.H., Ghaboussi, J.: Representation of material behavior: neural network-based models. In: IJCNN, International Joint Conference on Neural Networks, vol. 1, pp. 229–234 (1990)

    Google Scholar 

  • Xiao, F., Amirkhanian, S.N.: Effects of binders on resilient modulus of rubberized mixtures containing RAP using artificial neural network approach. ASTM Journal of Testing and Evaluation 37(2) (2009)

    Google Scholar 

  • Yeh, I.-C.: Modeling concrete strength with augment-neuron networks. ASCE Journal of Materials in Civil Engineering 10(4), 263–268 (1998a)

    Article  Google Scholar 

  • Yeh, I.-C.: Modeling of strength of high-performance concrete using artificial neural networks. Cement and Concrete Research 28(12), 1797–1808 (1998b)

    Article  Google Scholar 

  • Yeh, I.-C.: Design of high-performance concrete mixture using neural networks and nonlinear programming. ASCE J. Comput. Civil Eng. 13(1), 36–42 (1999)

    Article  Google Scholar 

  • Zeghal, M.: Modeling the creep compliance of asphalt concrete using the artificial neural network technique. In: Annual Congress of the Geo-Institute of ASCE, GeoCongress 2008, New Orleans, pp. 1–7 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, S., Gopalakrishnan, K., Ceylan, H. (2009). Neural Networks Application in Pavement Infrastructure Materials. In: Gopalakrishnan, K., Ceylan, H., Attoh-Okine, N.O. (eds) Intelligent and Soft Computing in Infrastructure Systems Engineering. Studies in Computational Intelligence, vol 259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04586-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04586-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04585-1

  • Online ISBN: 978-3-642-04586-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics