Skip to main content

Knowledge Discovery and Data Mining Using Artificial Intelligence to Unravel Porous Asphalt Concrete in the Netherlands

  • Chapter
Intelligent and Soft Computing in Infrastructure Systems Engineering

Part of the book series: Studies in Computational Intelligence ((SCI,volume 259))

  • 1106 Accesses

Abstract

The main goal of this study was to discover knowledge from data about Porous Asphalt Concrete (PAC) roads to achieve a better understanding of the behavior of them and via this understanding improve pavement quality and enhance its lifespan. The knowledge discovery process includes five steps, being understanding the problem, understanding the data, data preparation, data mining (modeling), and the interpretation/evaluation of the results of the models. At the moment, almost 75% of the Dutch motorways network has a PAC top layer. The main damage of PAC is raveling, which is when the top layer of the road loses stones. The SHRP-NL databases provided ten years of material property data from PAC roads. The data for climate and traffic were obtained from databases of the Royal Dutch Meteorological Institute (KNMI) and the Ministry of Transport and Water Management, respectively. Due to the low number of data points (74 data points), an extensive variable selection was performed using eight different methods to determine the four or five most influential input variables and consequently reduce the input dimension. These methods were decision trees, genetic polynomial, artificial neural network, rough set theory, correlation based variable selection with bidirectional and genetic search, wrappers of neural network with genetic search, and relief ranking filter. The modeling step resulted in 8 intelligent models which were developed using two prediction techniques, being artificial neural networks and support vector machines and two rule-based techniques, being decision trees and rough set theory. Taking the low number of data points into account, the prediction models showed a good performance (R2 = 0.95). The rule based models were transparent and easy to interpret but performed less.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abdallah, I., Ferregut, C., Melchor-Lucero, O., Nazarian, S.: Stiffness properties of composite pavements using artificial neural network-based methodologies. 0-1711, Centre for Highway Material research, The University of Texas at El Paso, El Paso (2001)

    Google Scholar 

  • Abonyi, J., Feil, B., Abraham, A.: Computational Intelligence in Data Mining. Informatica 29, 3–12 (2005)

    Google Scholar 

  • Apte, C., Hong, S.J.: Predicting Equity Returns from Securities Data with Minimal Rule Generation. Advances in Knowledge Discovery and Data mining, 514–560 (1996)

    Google Scholar 

  • Attoh-Okine, N.O.: Combining Use of Rough Set and Artificial Neural Networks in Doweled-Pavement-Performance Modeling—A Hybrid Approach. Journal of Transportation Engineering 28(3) (2002)

    Google Scholar 

  • Aultman-Hall, L., Jackson, E., Dougan, C.E., Choi, S.-N.: Models relating pavement quality measures. Transportation research record, 119–125 (2004)

    Google Scholar 

  • Avila, C., Shiraishi, Y., Tsuji, Y.: Crack width prediction of reinforced concrete structures by artificial neural networks. In: 7th Seminar on Neural Network Applications in Electrical Engineering, Belgrade, Serbia and Montenegro, pp. 39–44 (2004)

    Google Scholar 

  • Bayrak, M.B., Teomete, E., Agarwal, M.: Use of Artificial neural network for predicting rigid pavement roughness. In: Midwest Transportation Consortium, Fall Student Conference, Ames, Iowa (2004)

    Google Scholar 

  • Bishop, C.M., Tipping, M.E.: Bayesian regression and classification. NATO Science Series III: Computer & Systems Sciences. IOS Press, Amsterdam (2003)

    Google Scholar 

  • Bosurgi, G., Trifirò, F., Xibilia, M.G.: Artificial Neural Network for Predicting Road Pavement Conditions. In: 4th International SIIV Congress, Palermo, Italy (2007)

    Google Scholar 

  • Brachman, R.J., Anand, T.: The Process of Knowledge Discovery in Databases: A First Sketch. In: KDD Workshop (1994)

    Google Scholar 

  • Bray, J., Verma, B., Li, X., He, W.: A Neural Network based Technique for Automatic Classification of Road Cracks. In: International Joint Conference on Neural Networks, Vancouver, BC, Canada, pp. 907–912 (2006)

    Google Scholar 

  • Bredenhann, S.J., van de Ven, M.F.C.: Application of Artificial Neural Networks in the Back-calculation of Flexible Pavement Layer Moduli from Deflection Measurements. In: Proceedings of the 8th Conference on Asphalt Pavements for Southern Africa (CAPSA 2004), Sun City, South Africa (2004)

    Google Scholar 

  • Butt, A.A., Shahin, M.Y., Carpenter, S.H., Carnahan, J.V.: Application of Markov Process to Pavement Management System at Network Level. In: Third International Conference on Managing Pavements, San Antonio, Texas, pp. 159–172 (1994)

    Google Scholar 

  • Carey, W.N., Irick, P.E.: The pavement servicibility-performance cencept, Bulletin 250, Washington DC, pp. 40–58 (1960)

    Google Scholar 

  • Ceylan, H., Guclu, A., Tutumluer, E., Thompson, M.R.: Use of Artificial Neural Networks for Analyzing Full Depth Asphalt Pavements. In: TRB 2005, Annual Meeting, Washington DC, USA (2005a)

    Google Scholar 

  • Ceylan, H., Guclu, A., Tutumluer, E., Thompson, M.R.: Backcalculation of full-depth asphalt pavement layer moduli considering nonlinear stress-dependent subgrade behavior. International Journal of pavement Engineering 6(3), 171–182 (2005b)

    Article  Google Scholar 

  • Ceylan, H., Gopalakrishnan, K., Guclu, A.: Nonlinear Pavement Analysis Using Artificial Neural Network Based Stress-Dependent Models. In: 86th Annual Meeting of Transportation Research Board, Washington DC (2007)

    Google Scholar 

  • Chang, J.-R., Tzeng, G.-H., Hung, C.-T., Lin, H.-H.: Non-Additive Fuzzy Regression Applied to Establish Flexible Pavement Present Serviceability Index. In: The IEEE International Conference on Fuzzy Systems, pp. 1020–1025 (2003)

    Google Scholar 

  • Chang, J.-R., Hung, C.-T.u., Tzeng, G.-W., Lin, J.-D.: Non-additive Grey Relational Model: Case Study on. Evaluation of Flexible Pavement. In: FUZZ-IEEE Budapest, Hungary (2004)

    Google Scholar 

  • Chang, J., Hung, C., Chen, D.: Application of An Artificial Neural Network on Depth to Bedrock Prediction. International Journal of Computational Intelligence Research 2(1), 33–39 (2006)

    Article  Google Scholar 

  • Choi, J., Adams, T.M., Bahia, H.U.: Pavement roughness modeling using back-propagation neural network. Computer-Aided Civil and Infrastructure Engineering 19, 295–303 (2004)

    Article  Google Scholar 

  • Chou, J., O’Neill, W.A., Cheng, H.D.: Pavement Distress Classification Using Neural Networks. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 397–401 (1994)

    Google Scholar 

  • Cios, K.J., Pedrycz, W., Swiniarski, R.W., Kurgan, L.A.: Data Mining. A Knowledge Discovery Approach. Springer, New York (2007)

    MATH  Google Scholar 

  • CROW, Manual global visual inspection (in Dutch), National Information and Technology Platform for Transport, Infrastructure and Public space, Ede (2005)

    Google Scholar 

  • Demir, F.: Prediction of elastic modulus of normal and high strength concrete by artificial neural networks. Construction and Building Materials (2007) (in Press)

    Google Scholar 

  • DWW. PAC. Ministry of Transport, Public Works and Water management, Road and Hydraulic Engineering Division, Delft, Website (2005) (in Dutch)

    Google Scholar 

  • Dy, J.G., Brodley, C.E.: Feature Selection for Unsupervised Learning. Journal of Machine Learning Research 5, 845–889 (2004)

    MathSciNet  Google Scholar 

  • Eldin, N.N., Senouci, A.B.: Use of Neural Network for Condition rating of Jointed Concrete Pavements. Advances in Engineering Software 23, 133–141 (1996)

    Article  Google Scholar 

  • Engelbrecht, A.P.: Computational Intelligence: An Introduction. Wiley, Chichester (2007)

    Google Scholar 

  • Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From Data Mining to Knowledge Discovery in Databases. American Association for Artificial Intelligence (1996)

    Google Scholar 

  • Ferregut, C., Abdallah, I., Melchor-Lucero, O., Nazarian, S.: Artificial Neural Networks Based Methodologies for Rational Assessment of Remaining Life of Existing Pavements. Texas Department of Transportation, Austin, TX (1999)

    Google Scholar 

  • Geipot, Research on the Interrelationships Between Costs of Highway Construction, Final Report, 12 volumes. Maintenance and Utilisation (PICR), Brasilia, Brazil (1982)

    Google Scholar 

  • Goktepe, A.B., Agar, E., Lav, A.H.: Comparison of Multilayer Perceptron and Adaptive Neuro-Fuzzy System on Backcalculating the Mechanical Properties of Flexible Pavements. ARI The Bulletin of the Istanbul Technical University 54(3) (2004)

    Google Scholar 

  • Goktepe, A.B., Altun, S.: Artificial intelligence application in the backcalculation of the mechanical properties of flexible pavements (2006)

    Google Scholar 

  • Gopalakrishnan, K., Thompson, M.R., Manik, A.: Rapid Finite Element Based Airport Pavement Moduli Solutions Using Neural Networks. Int. J. of Computational Intelligence 3(1), 63–71 (2006)

    Google Scholar 

  • Guclu, A., Ceylan, H.: Condition Assessment of Composite Pavement Systems Using Neural-Network-Based Rapid Backcalculation Algorithms. In: Transportation Research Board 86th Annual Meeting (2007)

    Google Scholar 

  • Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice-Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  • Hoffman, P.C., Chou, K.C.: Infrastructure assessment: fuzzy regression with neural networks. In: Proceedings of the First International Joint Conference of the North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intelligent Systems Conference, and the NASA Joint Technolo, San Antonio, TX, USA, pp. 273–274 (1994)

    Google Scholar 

  • Hofman, R., Fafié, J.J., Sule, M.S., Hooghwerff, J., Kegel, J.C., Langebach, W.J., Hermens, P.: IPG-advice, application of two layer porous asphalt concrete on Dutch highway network - Part II. In: DWW-2005-031, Ministry of Transport, Public Works and Water management, Delft (2005) (in Dutch)

    Google Scholar 

  • Hong, H.P., Wang, S.S.: Stochastic Modeling of Pavement Performance. International Journal of Pavement Engineering 4(4), 235–243 (2003)

    Article  MathSciNet  Google Scholar 

  • Hsu, D.S., Tsai, C.H.: Reinforced concrete structural damage diagnosis by using artificial neural network. In: IASTED International Conference on Intelligent Information Systems (IIS 1997), vol. 149 (1997)

    Google Scholar 

  • Huang, C.C.: Development of Freeway Pavement Performance Prediction Model Using Markov Chain, Tamkang University (1997)

    Google Scholar 

  • Huang, C., Najjar, Y.M., Romanoschi, S.: Predicting the Asphalt Concrete Fatigue Life Using Artificial Neural Network Approach. In: TRB 2007 Annual Meeting, Washington DC, USA (2007)

    Google Scholar 

  • Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing - A Computational Approach to Learning and Machine Intelligence. Prentice-Hall, NJ (1997)

    Google Scholar 

  • Karan, M.A., Haas, R.: Determining Investment Priorities for Urbana Pavement Improvements. Journal of Assoc. of Asphalt Paving Technology 45 (1976)

    Google Scholar 

  • Karlaftis, M., Loizos, A.: Neural Networks and Nonparametric Statistical Models: Comparative Analysis in Pavement Condition Assessment. In: Proceedings of the 85th Transportation Research Board Annual Meeting, Washington D.C., U.S.A (2006)

    Google Scholar 

  • Kaur, D., Chou, E.: Applying Neuro-Fuzzy Techniques for Intelligent Highway Pavement Performance Prediction Modlel. In: 42nd Midwest Symposium on Circuits and Systems, Las Cruces, NM, USA (1999)

    Google Scholar 

  • Kaur, D., Tekkedil, D.: Fuzzy Expert System for Asphalt Pavement Performance Prediction. In: IEEE Intelligent Transportation Systems, Dearborn (MI), USA (2000)

    Google Scholar 

  • Kaur, D., Pulugurta, H.: Fuzzy decision tree based approach to predict the type of pavement repair. In: Proceedings of the 7th Conference on 7th WSEAS International Conference on Applied Informatics and Communications, Vouliagmeni, Athens, Greece (2007)

    Google Scholar 

  • Kim, Y.R., Lee, Y.-C., Ranjithan, S.: Flexible Pavement Condition Evaluation Using Deflection Basin Parameters and Dynamic Finite Element Analysis Implemented by Artificial Neural Networks. In: Tayabji, S.D., Lukanen, E.O. (eds.) Nondestructive Testing of Pavements and Backcalculation of Modili, vol. 17, American Society for Testing and Materials, West Conshohocken (2000)

    Google Scholar 

  • Kira, K., Rendell, L.: A practical approach to feature selection. In: International Conference on Machine Learning, Aberdeen, pp. 368–377 (1992)

    Google Scholar 

  • Kononenko, I., Kukar, M.: Machine learning and data mining: introduction to principles and algorithms. Horwood publishing, Chichester (2007)

    Google Scholar 

  • Lea, J., Harvey, J.T.: Data Mining of the Caltrans Pavement Management System (PMS) Database. California Department of Transportation, Richmond, CA (2004)

    Google Scholar 

  • Lee, B.J., Lee, H.D.: A Robust Position Invariant Artificial Neural Network for Digital Pavement Crack Analysis. In: TRB 2003 Annual Meeting, Washington, D.C., USA (2003)

    Google Scholar 

  • Lee, Y., Liu, Y., Ker, H.: Application of Modern Regression Techniques and Artifcial Neural Networks To Pavement Prediction Modeling. In: 86th Annual Meeting of the Transportation Research Board, 2007, Washington D.C (2007)

    Google Scholar 

  • Li, N., Xie, W.C., Haas, R.: Reliability-based processing of Markov chains for modeling pavement network deterioration. Transportation research record, 203–213 (1996)

    Google Scholar 

  • Loia, V., Sessa, S., Staiano, A., Tagliaferri, R.: Merging Fuzzy Logic, Neural Networks, and Genetic Computation in the Design of a Decision-Support System. International Journal of Intelligent Systems 15, 575–594 (2000)

    Article  MATH  Google Scholar 

  • Loizos, A., Georgiou, P., Plati, C.: Assessment of Asphalt Pavement Remaining Life using Artificial Neural Network Modelling. In: Advanced Characterisation of Pavement and Soil Engineering Materials, pp. 993–1002 (2007)

    Google Scholar 

  • Lou, Z., Lu, J.J., Gunaratne, M.: Road surface crack condition forecasting using neural network models College of Engineering, University of South Florida (1999)

    Google Scholar 

  • Lytton, R.L., Michalak, C.H., Scullion, T.: The Texas flexible pavement system. In: Fifth International Conference on Structural Design of Asphalt Pavements, The University of Michigan and the Delft University of Technology (1982)

    Google Scholar 

  • Maertens, K., Baerdemaeker, J.D., Babuska, R.: Genetic polynomial regression as input selection algorithm for non-linear identification. Soft Computing 10(9), 785–795 (2006)

    Article  Google Scholar 

  • Meerkerk, A.J.J.: Variation in Quality during the Construction of PAC, Master Thesis, Delft University of Technology, Delft (2004) (in Dutch)

    Google Scholar 

  • Mei, X., Gunaratne, M., Lu, J.J., Dietrich, B.: Neural Network for Rapid Depth Evaluation of Shallow Cracks in Asphalt Pavements. Computer-Aided Civil and Infrastructure Engineering 19(3), 223–230 (2004)

    Article  Google Scholar 

  • Meier, R.W., Rix, G.J.: Backcalculation of Flexible Pavement Moduli from Dynamic Deflection Basins Using Artificial Neural Networks. Transportation Research Record No. 1473, 72-81 (1995)

    Google Scholar 

  • Meignen, D., Bernadet, M., Briand, H.: One application of neural networks for detection of defects using video data bases: identification of road distresses. In: Eighth International Workshop on Database and Expert Systems Applications, Toulouse, France, pp. 459–464 (1997)

    Google Scholar 

  • Molenaar, A.A.A., Meerkerk, A.J.J., Miradi, M., van der Steen, T.: Performance of Porous Asphalt Concrete. Journal of the association of asphalt paving technologists 75, 1053–1094 (2006)

    Google Scholar 

  • Molenaar, A.A.A., Miradi, M.: Development of a Maintenance Planning Model for Motorways Based on an Artificial Neural Network. Delft University of Technology (2004)

    Google Scholar 

  • Mu-yu, L., Shao-yi, W.: Genetic optimization method of asphalt pavement based on rutting and cracking control. Journal of Wuhan University of Technology–Materials Science Edition 18(1), 72–75 (2003)

    Article  Google Scholar 

  • Nakatsuji, T., Miyasaka, J., Kawamura, A., Shirakawa, T.: Discriminant Analyses of Winter Road Surface Conditions Using Vehicular Motion Data Based on Artificial Intelligence Techniques. In: TRB 2005 Annual Meeting, Washington DC, USA (2005)

    Google Scholar 

  • Ozbay, K., Laub, R.: Models for Pavement Deterioration Using LTPP. New Jersey Department of Transportation Division of Research and Technology and U.S. Department of Transportation Federal Highway Administration, New Jersy (2001)

    Google Scholar 

  • Ozsahin, T.S., Oruc, S.: Neural network model for resilient modulus of emulsified asphalt mixtures. Construction and Building Materials (2007) (in press)

    Google Scholar 

  • Parsley, L.L., Robinson, R.: The TRRL, road investment model for developing countries (RTIM2), TRRL Laboratory Report 1057. Transport and Road Research Laboratory, Crowthorne, UK (1982)

    Google Scholar 

  • Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishing, Dordrecht (1991)

    MATH  Google Scholar 

  • Pekcan, O., Tutumluer, E., Thompson, M.R.: Analyzing pavements on lime-stabilized soils with artificial neural networks. In: 2007 Advanced Characterisation of Pavement and Soil Engineering Materials, London (2007)

    Google Scholar 

  • Rababaah, H., Vrajitoru, D., Wolfer, J.: Asphalt Pavement Crack Classification: A Comparison of GA, MLP, and SOM. In: Genetic and Evolutionary Computation Conference (2005)

    Google Scholar 

  • Rakesh, N., Jain, A.K., Reddy, M.A., Reddy, K.S.: Artificial neural networks - genetic algorithm based model for backcalculation of pavement layer moduli. International Journal of Pavement Engineering 7(3), 221–230 (2006)

    Article  Google Scholar 

  • Reddy, M.A., Reddy, K.S., Pandey, B.B.: Selection of Genetic Algorithm Parameters for Backcalculation of Pavement Moduli. International Journal of Pavement Engineering 5(2) (2004)

    Google Scholar 

  • Renze, J.: Outlier. In: Weisstein, E.W. (ed.) MathWorld–A Wolfram Web Resource (2008), http://mathworld.wolfram.com/Outlier.html

  • Rijkswterstaat, Verkeersgegevens 1980, Ministerie van Verkeer en Waterstaat Directoraat-Generaal Rijkswaterstaat Adviesdienst Verkeer en Vervoer (AVV), Den Haag (1980)

    Google Scholar 

  • Rijkswterstaat, Verkeersgegevens 1981, Ministerie van Verkeer en Waterstaat Directoraat-Generaal Rijkswaterstaat Adviesdienst Verkeer en Vervoer (AVV), Den Haag (1981)

    Google Scholar 

  • Rijkswterstaat, Verkeersgegevens 1982, Ministerie van Verkeer en Waterstaat Directoraat-Generaal Rijkswaterstaat Adviesdienst Verkeer en Vervoer (AVV), Den Haag (1982)

    Google Scholar 

  • Rijkswterstaat, Verkeersgegevens 1983, Ministerie van Verkeer en Waterstaat Directoraat-Generaal Rijkswaterstaat Adviesdienst Verkeer en Vervoer (AVV), Den Haag (1983)

    Google Scholar 

  • Rijkswterstaat, Verkeersgegevens 1984, Ministerie van Verkeer en Waterstaat Directoraat-Generaal Rijkswaterstaat Adviesdienst Verkeer en Vervoer (AVV), Den Haag (1984)

    Google Scholar 

  • Rijkswterstaat, Verkeersgegevens 1985, Ministerie van Verkeer en Waterstaat Directoraat-Generaal Rijkswaterstaat Adviesdienst Verkeer en Vervoer (AVV), Den Haag (1985)

    Google Scholar 

  • Roberts, C.A., Attoh-Okine, N.O.: Comparative Analysis of Two Artificial Neural Networks using Pavement Performance Prediction. Computer Aided Civil and Infrastructure Engineering 13(5), 339–348 (1998)

    Article  Google Scholar 

  • Saltan, M., Tigdemir, M., Karashin, M.: Artificial Neural Network Application for Flexible Pavement Thickness Modeling. Turkish J. Eng. Env. Sci. 26, 243–248 (2002)

    Google Scholar 

  • Saltan, M., Sezgin, H.: Hybrid neural network and finite element modeling of sub-base layer material properties in flexible pavements. Materials & Design 28(5), 1725–1730 (2006)

    Article  Google Scholar 

  • Saltan, M., Terzi, S.: Modeling deflection basin using artificial neural networks with cross-validation technique in backcalculating flexible pavement layer moduli. Advances in Engineering Software (2007) (in Press)

    Google Scholar 

  • Sweere, G.T.H., Zwieten, J., Eijbersen, M.J., Huipen, H.: Wegverhardingen op termijn bekeken - Technische Verslag SHRP-NL peiode 1990-1995, CROW, Ede (1996)

    Google Scholar 

  • Tarefder, R.A., White, L., Zaman, M.: Development and Application of A Rut prediction model for flexible Pavement. TRB 2005, USA (2005)

    Google Scholar 

  • Terzi, S., Saltan, M., Yildirim, T.: Optimization of The Deflection Basin By Genetic Algorithm And Neural Network Approach. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714. Springer, Heidelberg (2003)

    Google Scholar 

  • Terzi, S.: Modeling the Pavement Present Serviceability Index of Flexible Highway Pavements Using Data Mining. Journal of Applied Science 6(1), 193–197 (2006)

    Article  Google Scholar 

  • Terzi, S.: Modeling the pavement serviceability ratio of flexible highway pavements by artificial neural networks. Construction and Building Materials 21, 590–593 (2007)

    Article  Google Scholar 

  • Thube, D.T., Thube, A.D.: An alternative approach for modelling and simulation of pavement deterioration models: Artificial neural networks. In: TRB 2007 Annual Meeting, Washington DC, USA (2007)

    Google Scholar 

  • Way, G.B., Eisenberg, J.: Pavement Management System for Arzona Phase II: Verificiation of Performance Prediction Models and Developement of Database, Arizona Department of Transportation (1980)

    Google Scholar 

  • Weiss, S.I., Kulikowski, C.: Computer systems that learn: Classification and prediction methods from statistics, neural network, machine learning and expert systems. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  • Xiao, W., Yan, X., Zhang, X.: Pavement Distress Image Automatic Classification Based on DENSITY-Based Neural Network. Rough Sets and Knowledge Technology. In: First International Conference, RSKT 2006, Chongquing, China, pp. 685–692 (2006)

    Google Scholar 

  • Yang, J., Lu, J.J., Gunaratne, M.: Application of neural network models for forecasting of pavement crack index and pavement condition rating. Florida Deprtment of Transportation, Tampa, Florida (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miradi, M., Molenaar, A.A.A., van de Ven, M.F.C. (2009). Knowledge Discovery and Data Mining Using Artificial Intelligence to Unravel Porous Asphalt Concrete in the Netherlands. In: Gopalakrishnan, K., Ceylan, H., Attoh-Okine, N.O. (eds) Intelligent and Soft Computing in Infrastructure Systems Engineering. Studies in Computational Intelligence, vol 259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04586-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04586-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04585-1

  • Online ISBN: 978-3-642-04586-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics