Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 259))

Abstract

Kalman filter is a signal processing technique that estimates the state of a dynamic system from a series of noisy measurements. It is used in a wide range of engineering applications from radar to computer vision. This chapter demonstrates the application of a model identification procedure based on extended Kalman filter (EKF) and weighted global iteration (WGI) technique in pavement engineering. In particular, EKF-WGI is used to perform layer moduli back-calculation from falling weight deflectometer (FWD) data and to identify model parameters for Generalized Maxwell Model for hot mix asphalt using frequency sweep test data. In both cases, EKF-WGI is shown to provide consistent results that are independent of the seed values for both linear and nonlinear problems. It is believed that EKF-WGI provides an efficient, consistent and robust tool for optimization that has many potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kalman, R.E.: A New Approach to Linear Filtering and Prediction Problems. Transactions of the ASME–Journal of Basic Engineering 82 (Series D), 35–45 (1960)

    Google Scholar 

  2. Welch, G., Bishop, G.: SIGGRAPH 2001 Course 8: An Introduction to the Kalman Filter, University of North Carolina at Chapel Hill, Department of Computer Science. Chapel Hill (2001) NC 27599-3175

    Google Scholar 

  3. Maybeck, P.S.: Stochastic models, estimation, and control. 1 (1979)

    Google Scholar 

  4. Sorenson, H.W.: Least-Squares estimation: from Gauss to Kalman. IEEE Spectrum 7, 63–68 (1970)

    Article  Google Scholar 

  5. Gelb, A.: Applied Optimal Estimation. MIT Press, Cambridge (1974)

    Google Scholar 

  6. Lewis, F.L.: Optimal Estimation with an Introductory to Stochastic Control Theory. John Wiley & Sons, Inc., Chichester (1986)

    Google Scholar 

  7. Jacobs, O.L.R.: Introduction to Control Theory, 2nd edn. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  8. Brown, R.G., Hwang, P.Y.C.: Introduction to Random Signals and Applied Kalman Filtering: with MATLAB Exercises and Solutions, 3rd edn. Wiley & Sons, Inc., Chichester (1996)

    Google Scholar 

  9. Grewal, M.S., Andrews, P.A.: Kalman Filtering Theory and Practice Using MATLAB, 2nd edn. John Wiley & Sons, Inc, New York (2001)

    Google Scholar 

  10. University of North Carolina: The Kalman Filter, http://www.cs.unc.edu/~welch/kalman/

  11. McGee, L.A., Schmidt, S.F.: Discovery of the Kalman Filter as a Practical Tool for Aerospace and Industry, Technical Memorandum 86847, National Aeronautics and Space Administration (1985)

    Google Scholar 

  12. Asher, R.B., Maybeck, P.S., Mitchell, R.A.K.: Filtering for precision pointing and tracking with application for aircraft to satellite tracking. In: IEEE Conference Decision and Control, Houston, TX (1975)

    Google Scholar 

  13. Halamandaris, H., Ozdes, D.: Kalman Fitering Applied to a Marine Navigation System. In: Proceedings of the 1969 National Marine Navigation Meeting, Second Symposium on Manned Deep Submergence Vehicles, San Diego, CA (1969)

    Google Scholar 

  14. Alexander, H.L., Azarbayejani, A.J., Weigl, H.J.: Kalman-Filter-based machine vision for controlling free-flying unmanned remote vehicles. In: Proceedings of the American Control Conference, Chicago, IL (1992)

    Google Scholar 

  15. Grewal, M.S., Payne, H.J.: Identification of parameters in a freeway traffic model. IEEE Transactions on Systems, Man, and Cybernetics SMC-6, 176–185 (1976)

    Google Scholar 

  16. Potter, J.M.: Kalman Filtering Approach to Market Price Forecasting, Ph.D. Thesis, Iowa State University, Ames (1986)

    Google Scholar 

  17. Prabhu, A.V., Edgar, T.F.: A new state estimation method for high-mix semiconductor manufacturing processes. Journal of Process Control 19(7), 1149–1161 (2009)

    Article  Google Scholar 

  18. Jeon, S., Masayoshi, T., Tetsuaki, K.: A new kinematic Kalman filter (KKF) for end-effector sensing of robotic manipulators. In: The ASME International Mechanical Engineering Congress and Exposition, Seattle, WA (2008)

    Google Scholar 

  19. Hoshiya, M., Saito, E.: Structural Identification by Extended Kalman Filter. Journal of Engineering Mechanics 110(12), 1757–1772 (1984)

    Article  Google Scholar 

  20. Loh, C.-H., Tsaur, Y.-H.: Time Domain Estimation of Structural Parameters. Engineering Structures 10(2), 95–105 (1988)

    Article  Google Scholar 

  21. Bao, Z.-W., Shi, W.-Y.: Parameter identification and state estimation of structure models in shaking table test. In: The 5th International Conference on Structural Safety and Reliability, San Francisco (1989)

    Google Scholar 

  22. Zhang, H.Z., et al.: Parameter identification of inelastic structures under dynamic loads. Earthquake Engineering & Structural Dynamics 31(5), 1113–1130 (2002)

    Article  Google Scholar 

  23. Koh, C.G., See, L.M., Balendra, T.: Determination of storey stiffness of three-dimensional frame buildings. Engineering Structures 17(3), 179–186 (1995)

    Article  Google Scholar 

  24. Anderson, B.D., Moore, J.D.: Optimal Filtering. Prentice Hall, Inc., New Jersey (1979)

    MATH  Google Scholar 

  25. Carmichael, D.G.: State Estimation Problem in Experimental Structural Mechanics, National Bureau of Standards. Special Publication (1979)

    Google Scholar 

  26. Yun, C.B., Shinozuka, M.: Identification of Nonlinear Structural Dynamic Systems. Mechanics based design of structures and machines 8(2), 187–203 (1980)

    Article  Google Scholar 

  27. Yun, C.-B.: Damage assessment of bridge structures by system identification, pp. 2179–2186 (1989)

    Google Scholar 

  28. Koh, C.: Estimation of structural parameters in time domain. A substructure approach. Earthquake engineering structural dynamics 20(8), 787–801 (1991)

    Article  Google Scholar 

  29. Seibold, S.: Recursive identification of nonlinear systems by means of the Extended Kalman Filter. In: Proceedings of the International Modal Analysis Conference - IMAC, 1991, vol. 1, pp. 802–809 (1991)

    Google Scholar 

  30. Oreta, A.W.C., Tanabe, T.-a.: Localized identification of structures by Kalman filter. Structural engineering/earthquake engineering 9(4), 217–226 (1993)

    Google Scholar 

  31. Sutoh, A.: Dynamic parameter identification by the EK-WLI-FEM. Doboku Gakkai ronbunshÅ«. 2. Journal of hydraulic, coastal and environmental engineering (477), 97–100 (1993)

    Google Scholar 

  32. Lin, J.-S., Zhang, Y.: Nonlinear structural identification using extended kalman filter. Computers & Structures 52(4), 757–764 (1994)

    Article  MATH  Google Scholar 

  33. Oreta, A.W.C., Tanabe, T.-a.: Element Identification of Member Properties of Framed Structures. Journal of Structural Engineering 120(7), 1961–1976 (1994)

    Article  Google Scholar 

  34. Lea, J.: Open Source Pavement Engineering, http://www.openpave.org/

  35. The MathWorks, Matlab, http://www.mathworks.com

  36. Tayebali, A., Deacon, J.A., Monismith, C.L.: Development and evaluation of dynamic flexural beam fatigue test system. Transportation Research Record (1545), 89–97 (1996)

    Article  Google Scholar 

  37. ARA Inc.: Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, ERES Consultants Division, ARA Inc., National Cooperative Highway Research Program, Transportation Research Board, National Research Council (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wu, R., Choi, J.W., Harvey, J.T. (2009). Extended Kalman Filter and Its Application in Pavement Engineering. In: Gopalakrishnan, K., Ceylan, H., Attoh-Okine, N.O. (eds) Intelligent and Soft Computing in Infrastructure Systems Engineering. Studies in Computational Intelligence, vol 259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04586-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04586-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04585-1

  • Online ISBN: 978-3-642-04586-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics