Skip to main content

A Genetic Algorithm-Based Multiobjective Optimization for Analog Circuit Design

  • Conference paper
Knowledge-Based and Intelligent Information and Engineering Systems (KES 2009)

Abstract

Multiple, often conflicting objectives are specific to analog design. This paper presents a multiobjective optimization algorithm based on GA for design optimization of analog circuits. The fitness of each individual in the population is determined using a multiobjective ranking method. The algorithm found a set of feasible solutions on the Pareto front. Thus, the circuit designers can explore more possible solutions, choosing the final one according to further preferences/constraints. The proposed algorithm was shown to produce good solutions, in an efficient manner, for the design optimization of a CMOS amplifier, for two different sets of requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Greenwood, G.W., Tyrrell, A.M.: Introduction to Evolvable Hardware. IEEE Press Series on Computational Intelligence. Wiley&Sons Inc., Los Alamitos (2007)

    Google Scholar 

  2. Nicosia, G., Rinaudo, S., Sciacca, E.: An Evolutionary Algorithm-based Approach to Robust Analog Circuit Design using Constrained Multi-objective Optimization. Knowledge-based Systems 21(3), 175–183 (2008)

    Article  Google Scholar 

  3. Zitzler, E., Laumanns, M., Bleuler, S.: A Tutorial on Evolutionary Multiobjective Optimization. In: Proceedings of the Workshop on Multiple Objective Metaheuristics, pp. 3–38. Springer, Heidelberg (2004)

    Google Scholar 

  4. Yaser, M.A.K., Badar, K., Faisal, T.: Multiobjective Optimization Tool for a Free Structure Analog Circuits Design Using Genetic Algorithms and Incorporating Parasitics. In: Proc. of the Conference Companion on Genetic and Evolutionary computation, pp. 2527–2534 (2007) ISBN 978-1-59593-698-1

    Google Scholar 

  5. Goh, C., Li, Y.: Multi-objective Synthesis of CMOS Operational Amplifiers using a Hybrid Genetic Algorithm. In: Proc.of the 4th Asia-Pacific Conf. on Simulated Evolution and Learning, pp. 214–218 (2002)

    Google Scholar 

  6. Eeckelaert, T., Schoofs, R., Gielen, G., Steyaert, M., Sansen, W.: Hierarchical Bottom-up Analog Optimization Methodology Validated by a Delta-Sigma A/D Converter Design for the 802.11a/b/g standard. In: Design Automation Conf., 43rd ACM/IEEE, pp. 25–30 (2006)

    Google Scholar 

  7. Boyd, S., Vandeberghe, L.: Introduction to Convex Optimization with Engineering Application. Stanford University (1999)

    Google Scholar 

  8. Oltean, G.: FADO - A CAD Tool for Analog Modules. In: Proc. of the International Conference on Computer as a Tool, EUROCON 2005, Belgrade, pp. 515–518 (2005) ISBN 1-4244-0050-3, IEEE catalog number: 05EX1255C

    Google Scholar 

  9. Oltean, G.: Fuzzy Logic Toolbox 2, User’s Guide, on line version, The Math Works, Inc. (2007)

    Google Scholar 

  10. Jang, R.J.-S.: ANFIS, Adaptive-Network-Based Fuzzy Inference System. IEEE Transaction on System, Man, and Cybernetics 23(3), 665–685 (1993)

    Article  Google Scholar 

  11. Cecilia, R., Machado, J.A.T., Cunha, J.B., Pires, E.J.S.: Evolutionary Computation in the Design of Logic Circuits. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 1664–1669 (2007)

    Google Scholar 

  12. Pohlheim, H.: GEATbx Introduction to Evolutionary Algorithms: Overview, Methods and Operators, version 3.7 (November 2005), http://www.geatbx.com/

  13. Mühlenbein, H., Schlierkamp-Voosen, D.: Predictive models for the breeder genetic algorithm in continuous parameter optimization. In: Evolutionary Computation, vol. 1(1), pp. 25–49 (1993) ISSN 1063-6560

    Google Scholar 

  14. Oltean, G.: Fuzzy Techniques in Analog Circuit Design. WSEAS Transactions on Circuits and Systems 7(5), 402–415 (2008)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oltean, G., Hintea, S., Sipos, E. (2009). A Genetic Algorithm-Based Multiobjective Optimization for Analog Circuit Design. In: Velásquez, J.D., Ríos, S.A., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based and Intelligent Information and Engineering Systems. KES 2009. Lecture Notes in Computer Science(), vol 5712. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04592-9_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04592-9_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04591-2

  • Online ISBN: 978-3-642-04592-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics