Abstract
The biggest challenge in hand detection and tracking is the high dimensionality of the hand’s kinematic configuration space of about 30 degrees of freedom, which leads to a huge variance in its projections. This makes it difficult to come to a tractable model of the hand as a whole. To overcome this problem, we suggest to concentrate on posture invariant local constraints, that exist on finger appearances. We show that, besides skin color, there is a number of additional geometric and photometric invariants. This paper presents a novel approach to real-time hand detection and tracking by selecting local regions that comply with these posture invariants. While most existing methods for hand tracking rely on a color based segmentation as a first preprocessing step, we integrate color cues at the end of our processing chain in a robust manner. We show experimentally that our approach still performs robustly above cluttered background, when using extremely low quality skin color information. With this we can avoid a user- and lighting-specific calibration of skin color before tracking.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kolsch, M., Turk, M.: Robust hand detection. In: Int. Conf. on Automatic Face and Gesture Recognition, May 17–19, pp. 614–619 (2004)
Athitsos, V., Sclaroff, S.: Estimating 3d hand pose from a cluttered image. In: CVPR, June 2003, vol. 2, pp. II–432–II–439 (2003)
de La Gorce, M., Paragios, N., Fleet, D.: Model-based hand tracking with texture, shading and self-occlusions. In: CVPR (2008)
Rehg, J., Kanade, T.: Digiteyes: vision-based hand tracking for human-computer interaction. In: Workshop on Motion of Non-Rigid and Articulated Objects, November 1994, pp. 16–22 (1994)
Stenger, B., Thayananthan, A., Torr, P., Cipolla, R.: Model-based hand tracking using a hierarchical bayesian filter. PAMI 28(9), 1372 (2006)
von Hardenberg, C., Bérard, F.: Bare-hand human-computer interaction. In: Workshop on Perceptive User Interfaces, pp. 1–8. ACM, New York (2001)
Lee, T., Hollerer, T.: Handy ar: Markerless inspection of augmented reality objects using fingertip tracking. In: Int. Symp. on Wearable Computers, pp. 83–90 (2007)
Oka, K., Sato, Y., Koike, H.: Real-time fingertip tracking and gesture recognition. IEEE Computer Graphics and Applications 22(6), 64–71 (2002)
Maccormick, J., Isard, M.: Partitioned sampling, articulated objects, and interface-quality hand tracking. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 3–19. Springer, Heidelberg (2000)
Koller, T., Gerig, G., Szekely, G., Dettwiler, D.: Multiscale detection of curvilinear structures in 2-d and 3-d imagedata. In: ICCV, pp. 864–869 (1995)
Steger, C.: Extracting curvilinear structures: A differential geometric approach. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1065, pp. 630–641. Springer, Heidelberg (1996)
Bradski, G.R., et al.: Computer vision face tracking for use in a perceptual user interface. Intel Technology Journal 2(2), 12–21 (1998)
Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. PAMI 24(5), 603–619 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Petersen, N., Stricker, D. (2009). Fast Hand Detection Using Posture Invariant Constraints. In: Mertsching, B., Hund, M., Aziz, Z. (eds) KI 2009: Advances in Artificial Intelligence. KI 2009. Lecture Notes in Computer Science(), vol 5803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04617-9_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-04617-9_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04616-2
Online ISBN: 978-3-642-04617-9
eBook Packages: Computer ScienceComputer Science (R0)