Skip to main content

Parameter Evolution: A Design Pattern for Active Vision

  • Conference paper
KI 2009: Advances in Artificial Intelligence (KI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5803))

Included in the following conference series:

  • 1618 Accesses

Abstract

In current robot applications the developer has to deal with changing environments, making a one-time calibration of algorithm parameters for the vision system impossible. A design pattern dealing with this problem thereby incorporating evolutionary strategies is presented and demonstrated on an example. The example shows that it is possible for the vision system to adjust its parameters automatically and to achieve results near to the optimum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brugali, D.: Stable analysis patterns for robot mobility. In: Brugali, D. (ed.) Software Engineering for Experimental Robotics, vol. 30, pp. 9–30. Springer, Berlin (2007)

    Chapter  Google Scholar 

  2. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.: Pattern-Oriented Software Architecture: A System of Patterns, vol. 1. Wiley&Sons, Hoboken (1996)

    Google Scholar 

  3. Rechenberg, I.: Evolutionsstrategie 1994. Frommann-Holzboog, Stuttgart (1994)

    Google Scholar 

  4. Schwefel, H.P.: Evolution and Optimum Seeking. Wiley, New York (1995)

    MATH  Google Scholar 

  5. Müller, M., Keimling, R., Lang, S., Pauli, J., Dahmen, U., Dirsch, O.: Estimating Blood Flow Velocity in Liver Vessels. In: Meinzer, H.P., Deserno, T., Handels, H., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin. Informatik aktuell, pp. 36–40. Springer, Heidelberg (2009)

    Google Scholar 

  6. Bäck, T.: Evolutionary Algorithms in Theory and Practise. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  7. Liedtke, C.E., Blömer, A., Gahm, T.: Knowledge based configuration of image segmentation processes. IJIST 2, 285–295 (1990)

    Google Scholar 

  8. Pauli, J., Blömer, A., Liedtke, C.E., Radig, B.: Zielorientierte Integration und Adaption von Bildanalyseprozessen. In: KI, vol. 3, pp. 30–34 (1995)

    Google Scholar 

  9. Pauli, J., Radig, B., Blömer, A., Liedtke, C.E.: Integrierte, adaptive Bildanalyse. Technical Report I9204, TU München, Institut für Informatik (1992)

    Google Scholar 

  10. van Rijsbergen, C.J.: Information Retrieval, 2nd edn. Butterworths, London (1979)

    MATH  Google Scholar 

  11. Arnold, D.V.: Noisy Optimization with Evolution Strategies. Kluwer Academic Publishers, Norwell (2002)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Müller, M., Senftleben, D., Pauli, J. (2009). Parameter Evolution: A Design Pattern for Active Vision. In: Mertsching, B., Hund, M., Aziz, Z. (eds) KI 2009: Advances in Artificial Intelligence. KI 2009. Lecture Notes in Computer Science(), vol 5803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04617-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04617-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04616-2

  • Online ISBN: 978-3-642-04617-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics