Skip to main content

Surrogate Constraint Functions for CMA Evolution Strategies

  • Conference paper
KI 2009: Advances in Artificial Intelligence (KI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5803))

Included in the following conference series:

  • 1717 Accesses

Abstract

Many practical optimization problems are constrained black boxes. Covariance Matrix Adaptation Evolution Strategies (CMA-ES) belong to the most successful black box optimization methods. Up to now no sophisticated constraint handling method for Covariance Matrix Adaptation optimizers has been proposed. In our novel approach we learn a meta-model of the constraint function and use this surrogate model to adapt the covariance matrix during the search at the vicinity of the constraint boundary. The meta-model can be used for various purposes, i.e. rotation of the mutation ellipsoid, checking the feasibility of candidate solutions or repairing infeasible mutations by projecting them onto the constraint surrogate function. Experimental results show the potentials of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Coello Coello, C.A.: Theoretical and numerical constraint handling techniques used with evolutionary algorithms: A survey of the state of the art. Computer Methods in Applied Mechanics and Engineering 191(11-12), 1245–1287 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hansen, N.: The CMA evolution strategy: A tutorial. Technical report, TU Berlin, ETH Zürich (2005)

    Google Scholar 

  3. Jimenez, F., Verdegay, J.L.: Evolutionary techniques for constrained optimization problems. In: Zimmermann, H.-J. (ed.) 7th European Congress on Intelligent Techniques and Soft Computing (EUFIT 1999). Verlag Mainz, Aachen (1999)

    Google Scholar 

  4. Kramer, O.: Self-Adaptive Heuristics for Evolutionary Computation. Springer, Berlin (2008)

    MATH  Google Scholar 

  5. Kuri-Morales, A., Quezada, C.V.: A universal eclectic genetic algorithm for constrained optimization. In: Proceedings 6th European Congress on Intelligent Techniques and Soft Computing (EUFIT 1998), September 1998, pp. 518–522. Verlag Mainz, Aachen (1998)

    Google Scholar 

  6. Marsaglia, G.: Choosing a point from the surface of a sphere. The Annals of Mathematical Statistics 43, 645–646 (1972)

    Article  MATH  Google Scholar 

  7. Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  8. Ostermeier, A., Gawelczyk, A., Hansen, N.: A derandomized approach to self adaptation of evolution strategies. Evolutionary Computation 2(4), 369–380 (1994)

    Article  Google Scholar 

  9. Schwefel, H.-P.: Evolution and Optimum Seeking. Sixth-Generation Computer Technology. Wiley Interscience, New York (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kramer, O., Barthelmes, A., Rudolph, G. (2009). Surrogate Constraint Functions for CMA Evolution Strategies. In: Mertsching, B., Hund, M., Aziz, Z. (eds) KI 2009: Advances in Artificial Intelligence. KI 2009. Lecture Notes in Computer Science(), vol 5803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04617-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04617-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04616-2

  • Online ISBN: 978-3-642-04617-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics