Abstract
The optimization of multiple conflictive objectives at the same time is a hard problem. In most cases, a uniform distribution of solutions on the Pareto front is the main objective. We propose a novel evolutionary multi-objective algorithm that is based on the selection with regard to equidistant lines in the objective space. The so-called rakes can be computed efficiently in high dimensional objective spaces and guide the evolutionary search among the set of Pareto optimal solutions. First experimental results reveal that the new approach delivers a good approximation of the Pareto front with uniformly distributed solutions. As the algorithm is based on a (μ + λ)-Evolution Strategy with birth surplus it can use σ-self-adaptation. Furthermore, the approach yields deeper insights into the number of solutions that are necessary for a uniform distribution of solutions in high-dimensional objective spaces.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective Selection based on Dominated hypervolume. European Journal of Operational Research 181(3), 1653–1669 (2007)
Beyer, H.-G., Schwefel, H.-P.: Evolution strategies - A comprehensive introduction. Natural Computing 1, 3–52 (2002)
Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)
Huang, V.L., Qin, A.K., Deb, K., Zitzler, E., Suganthan, P.N., Liang, J.J., Preuss, M., Huband, S.: Problem definitions for performance assessment of multi-objective optimization algorithms. Technical report, Nanyang Technological University, Singapore (2007)
Schwefel, H.-P.: Evolution and Optimum Seeking. Sixth-Generation Computer Technology. Wiley Interscience, New York (1995)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. In: EUROGEN 2001. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, Athens, Greece, pp. 95–100 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kramer, O., Koch, P. (2009). Rake Selection: A Novel Evolutionary Multi-Objective Optimization Algorithm. In: Mertsching, B., Hund, M., Aziz, Z. (eds) KI 2009: Advances in Artificial Intelligence. KI 2009. Lecture Notes in Computer Science(), vol 5803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04617-9_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-04617-9_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04616-2
Online ISBN: 978-3-642-04617-9
eBook Packages: Computer ScienceComputer Science (R0)