Abstract
Temporal expressions are important structures in natural language. In order to understand text, temporal expressions have to be extracted and normalized. In this paper we present and compare two approaches for the automatic recognition of temporal expressions, based on a supervised machine learning approach and trained on TimeBank. The first approach performs a token-by-token classification and the second one does a binary constituent-based classification of chunk phrases. Our experiments demonstrate that on the TimeBank corpus constituent-based classification performs better than the token-based one. It achieves F1-measure values of 0.852 for the detection task and 0.828 when an exact match is required, which is better than the state-of-the-art results for temporal expression recognition on TimeBank.
This work has been partly funded by the Flemish government (through IWT) and by Space Applications Services NV as part of the ITEA2 project LINDO (ITEA2-06011).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pustejovsky, J., Castaño, J., Ingria, R., SaurÃ, R., Gaizauskas, R., Setzer, A., Katz, G.: TimeML: Robust Specification of Event and Temporal Expressions in Text. In: Fifth International Workshop on Computational Semantics (2003)
Pustejovsky, J., Hanks, P., SaurÃ, R., See, A., Day, D., Ferro, L., Gaizauskas, R., Lazo, M., Setzer, A., Sundheim, B.: The TimeBank Corpus. In: Corpus Linguistics 2003, pp. 647–656 (2003)
TERN, Evaluation Plan (2004), http://fofoca.mitre.org/tern_2004/tern_evalplan-2004.29apr04.pdf
Boguraev, B., Ando, R.K.: TimeBank-Driven TimeML Analysis. In: Annotating, Extracting and Reasoning about Time and Events. Dagstuhl Seminar Proceedings. Dagstuhl, Germany (2005)
Ferro, L.: TERN Evaluation Task Overview and Corpus, http://fofoca.mitre.org/tern_2004/ferro1_TERN2004_task_corpus.pdf
Ferro, L., Gerber, L., Mani, I., Sundheim, B., Wilson, G.: TIDES 2003, Standard for the Annotation of Temporal Expressions (2003), http://timex2.mitre.org
Boguraev, B., Pustejovsky, J., Ando, R., Verhagen, M.: TimeBank Evolution as a Community Resource for TimeML Parsing. Language Resource and Evaluation 41(1), 91–115 (2007)
Mani, I., Wilson, G.: Robust Temporal Processing of News. In: 38th Annual Meeting on Association for Computational Linguistics, pp. 69–76 (2000)
Negri, M., Marseglia, L.: Recognition and Normalization of Time Expressions: ITC-irst at TERN 2004. Technical Report, ITC-irst, Trento (2004)
Ahn, D., Adafre, S.F., de Rijke, M.: Extracting Temporal Information from Open Domain Text: A Comparative Exploration. Digital Information Management 3(1), 14–20 (2005)
Hacioglu, K., Chen, Y., Douglas, B.: Automatic Time Expression Labeling for English and Chinese Text. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 548–559. Springer, Heidelberg (2005)
Poveda, J., Surdeanu, M., Turmo, J.: A Comparison of Statistical and Rule-Induction Learners for Automatic Tagging of Time Expressions in English. In: International Symposium on Temporal Representation and Reasoning, pp. 141–149 (2007)
Ahn, D., van Rantwijk, J., de Rijke, M.: A Cascaded Machine Learning Approach to Interpreting Temporal Expressions. In: NAACL-HLT 2007 (2007)
Ratnaparkhi, A.: A Maximum Entropy Model for Part-of-Speech Tagging. In: Conference on Empirical Methods in Natural Language Processing, pp. 133–142 (1996)
Ratnaparkhi, A.: Learning to Parse Natural Language with Maximum Entropy Models. Machine Learning 34(1), 151–175 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kolomiyets, O., Moens, MF. (2009). Comparing Two Approaches for the Recognition of Temporal Expressions. In: Mertsching, B., Hund, M., Aziz, Z. (eds) KI 2009: Advances in Artificial Intelligence. KI 2009. Lecture Notes in Computer Science(), vol 5803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04617-9_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-04617-9_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04616-2
Online ISBN: 978-3-642-04617-9
eBook Packages: Computer ScienceComputer Science (R0)