Skip to main content

Model-Based Test Prioritizing – A Comparative Soft-Computing Approach and Case Studies

  • Conference paper
KI 2009: Advances in Artificial Intelligence (KI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5803))

Included in the following conference series:

Abstract

Man-machine systems have many features that are to be considered simultaneously. Their validation often leads to a large number of tests; due to time and cost constraints they cannot exhaustively be run. It is then essential to prioritize the test subsets in accordance with their importance for relevant features. This paper applies soft-computing techniques to the prioritizing problem and proposes a graph model-based approach where preference degrees are indirectly deter mined. Events, which imply the relevant system behavior, are classified, and test cases are clustered using (i) unsupervised neural network clustering, and (ii) Fuzzy c-Means clustering algorithm. Two industrial case studies validate the approach and compare the applied techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dunn, J.C.: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. Journal of Cybernetics 3, 32–57 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Belli, F., Budnik, C.J., White, L.: Event-Based Modeling, Analysis and Testing of User Interactions – Approach and Case Study. J. Software Testing, Verification & Reliability 16(1), 3–32 (2006)

    Article  Google Scholar 

  3. Belli, F., Budnik, C.J.: Test Minimization for Human-Computer Interaction. J. Applied Intelligence 7(2) (2007) (to appear)

    Google Scholar 

  4. Bryce, R.C., Colbourn, C.C.: Prioritized Interaction Testing for Pair-wise Coverage with Seeding and Constraints. Information and Software Technology 48, 960–970 (2006)

    Article  Google Scholar 

  5. Rummelhart, D.E., Zipser, D.: Competitive Learning. J. Cognitive Science 9, 75–112 (1985)

    Article  Google Scholar 

  6. Eminov, M.E.: Fuzzy c-Means Based Adaptive Neural Network Clustering. In: Proc. TAINN 2003, Int. J. Computational Intelligence, pp. 338–343 (2003)

    Google Scholar 

  7. Belli, F., Eminov, M., Gökçe, N.: Coverage-Oriented, Prioritized Testing – A Fuzzy Clustering Approach and Case Study. In: Bondavalli, A., Brasileiro, F., Rajsbaum, S. (eds.) LADC 2007. LNCS, vol. 4746, pp. 95–110. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Binder, R.V.: Testing Object-Oriented Systems. Addison-Wesley, Reading (2000)

    Google Scholar 

  9. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    Book  MATH  Google Scholar 

  10. Hoppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis. John Wiley, Chichester (1999)

    MATH  Google Scholar 

  11. Fu, L.: Neural Networks in computer Intelligence. McGraw Hill, Inc., New York (1994)

    Google Scholar 

  12. Elbaum, S., Malishevsky, A., Rothermel, G.: Test Case Prioritization: A Family of Empirical Studies. IEEE Transactions on Software Engineering 28(2), 182–191 (2002)

    Article  Google Scholar 

  13. Edmonds, J., Johnson, E.L.: Matching: Euler Tours and the Chinese Postman. Math. Programming, 88–124 (1973)

    Google Scholar 

  14. Eminov, M., Gokce, N.: Neural Network Clustering Using Competitive Learning Algorithm. In: Proc. TAINN 2005, pp. 161–168 (2005)

    Google Scholar 

  15. Kim, D.J., Park, Y.W., Park, D.J.: A Novel Validity Index for Clusters. IEICE Trans. Inf & System, 282–285 (2001)

    Google Scholar 

  16. Belli, F., Eminov, M., Gökçe, N.: Prioritizing Coverage-Oriented Testing Process- An Adaptive-Learning-Based Approach and Case Study. In: The Fourth IEEE International Workshop on Software Cybernetics, IWSC 2007, Beijing, China, July 24 (2007)

    Google Scholar 

  17. Memon, A.M., Pollack, M.E., Soffa, M.L.: Hierarchical GUI Test Case Generation Using Automated Planning. IEEE Trans. Softw. Eng. 27/2, 144–155 (2001)

    Article  Google Scholar 

  18. Zhu, H., Hall, P.A.V., May, J.H.R.: Software Unit Test Coverage And Adequacy. ACM Computing Surveys 29(4) (December 1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Belli, F., Eminov, M., Gokce, N. (2009). Model-Based Test Prioritizing – A Comparative Soft-Computing Approach and Case Studies. In: Mertsching, B., Hund, M., Aziz, Z. (eds) KI 2009: Advances in Artificial Intelligence. KI 2009. Lecture Notes in Computer Science(), vol 5803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04617-9_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04617-9_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04616-2

  • Online ISBN: 978-3-642-04617-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics