Skip to main content

Towards System Optimum: Finding Optimal Routing Strategies in Time-Dependent Networks for Large-Scale Evacuation Problems

  • Conference paper
KI 2009: Advances in Artificial Intelligence (KI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5803))

Included in the following conference series:

Abstract

Evacuation planning crucially depends on good routing strategies. This article compares two different routing strategies in a multi-agent simulation of a large real-world evacuation scenario. The first approach approximates a Nash equilibrium, where every evacuee adopts an individually optimal routing strategy regardless of what this solution imposes on others. The second approach approximately minimizes the total travel time in the system, which requires to enforce cooperative behavior of the evacuees. Both approaches are analyzed in terms of the global evacuation dynamics and on a detailed geographic level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ben-Akiva, M., Lerman, S.R.: Discrete choice analysis. The MIT Press, Cambridge (1985)

    Google Scholar 

  2. Bierlaire, M., Antonini, G., Weber, M.: Behavioral dynamics for pedestrians. In: Axhausen, K. (ed.) Moving through nets: The physical and social dimensions of travel. Elsevier, Amsterdam (2003)

    Google Scholar 

  3. Chen, X., Zhan, F.: Agent-based modeling and simulation of urban evacuation: Relative effectiveness of simultaneous and staged evacuation strategies. Paper 04-0329, Transportation Research Board Annual Meeting, Washington, D.C (2004)

    Google Scholar 

  4. Ferber, J.: Multi-agent systems. An Introduction to distributed artificial intelligence. Addison-Wesley, Reading (1999)

    Google Scholar 

  5. Gawron, C.: An iterative algorithm to determine the dynamic user equilibrium in a traffic simulation model. International Journal of Modern Physics C 9(3), 393–407 (1998)

    Article  Google Scholar 

  6. Helbing, D., Farkas, I., Molnar, P., et al.: Simulation of pedestrian crowds in normal and evacuation situations. In: Proceedings of the 1st international conference on Pedestrian and Evacation Dynamics, 2001, Duisburg. Springer, Heidelberg (2002)

    Google Scholar 

  7. Hobeika, A., Kim, C.: Comparison of traffic assignments in evacuation modeling. IEEE Transactions on Engineering Management 45(2), 192–198 (1998)

    Article  Google Scholar 

  8. Jha, M., Moore, K., Pashaie, B.: Emergency evacuation planning with microscopic traffic simulation. Paper 04-2414, Transportation Research Board Annual Meeting, Washington, D.C (2004)

    Google Scholar 

  9. Klüpfel, H., Meyer-König, T., Keßel, A., et al.: Simulating evacuation processes and comparison to empirical results. In: Fukui, M., et al. (eds.) Traffic and granular flow  2001, pp. 449–454. Springer, Heidelberg (2003)

    Google Scholar 

  10. Kwon, E., Pitt, S.: Evaluation of emergency evacuation strategies for downtown event traffic using a dynamic network model. Paper 05-2164, Transportation Research Board Annual Meeting, Washington, D.C (2005)

    Google Scholar 

  11. Lämmel, G., Grether, D., Nagel, K.: The representation and implementation of time-dependent inundation in large-scale microscopic evacuation simulations. Transportation Research Part C: Emerging Technologies. Corrected Proof: (in Press, 2009)

    Google Scholar 

  12. Lämmel, G., Rieser, M., Nagel, K., et al.: Emergency preparedness in the case of a tsunami – evacuation analysis and traffic optimization for the Indonesian city of Padang. In: Proceedings of the 4th international conference on Pedestrian and Evacuation Dynamics, 2008, Wuppertal. Springer, Heidelberg (2009)

    Google Scholar 

  13. Lu, Q., George, B., Shekhar, S.: Capacity constrained routing algorithms for evacuation planning: A summary of results. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 291–307. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Nash, J.: Non-cooperative games. Annals of Mathematics 54(2), 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  15. Peeta, S., Mahmassani, H.: System optimal and user equilibrium time-dependent traffic assignment in congested networks. Annals of Operations Research 60, 81–113 (1995)

    Article  MATH  Google Scholar 

  16. Peeta, S., Ziliaskopoulos, A.: Foundations of Dynamic Traffic Assignment: The Past, the Present and the Future. Networks and Spatial Economics 1(3), 233–265 (2001)

    Article  Google Scholar 

  17. Schneider, V., Könnecke, R.: Simulating evacuation processes with ASERI. In: Proceedings of the 1st international conference on Pedestrian and Evacation Dynamics, 2001, Duisburg. Springer, Heidelberg (2002)

    Google Scholar 

  18. Sheffi, Y.: Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods. Prentice-Hall, Englewood Cliffs (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lämmel, G., Flötteröd, G. (2009). Towards System Optimum: Finding Optimal Routing Strategies in Time-Dependent Networks for Large-Scale Evacuation Problems. In: Mertsching, B., Hund, M., Aziz, Z. (eds) KI 2009: Advances in Artificial Intelligence. KI 2009. Lecture Notes in Computer Science(), vol 5803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04617-9_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04617-9_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04616-2

  • Online ISBN: 978-3-642-04617-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics