Skip to main content

A Manifold Representation as Common Basis for Action Production and Recognition

  • Conference paper
KI 2009: Advances in Artificial Intelligence (KI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5803))

Included in the following conference series:

Abstract

In this paper, we first review our previous work in the domain of dextrous manipulation, where we introduced Manipulation Manifolds – a highly structured manifold representation of hand postures which lends itself to simple and robust manipulation control schemes.

Coming from this scenario, we then present our idea of how this generative system can be naturally extended to the recognition and segmentation of the represented movements providing the core representation for a combined system for action production and recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bitzer, S., Havoutis, I., Vijayakumar, S.: Synthesising Novel Movements through Latent Space Modulation of Scalable Control Policies. In: Asada, M., Hallam, J.C.T., Meyer, J.-A., Tani, J. (eds.) SAB 2008. LNCS (LNAI), vol. 5040, pp. 199–209. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, New York (2002)

    MATH  Google Scholar 

  3. Klanke, S.: Learning Manifolds with the Parametrized Self-Organizing Map and Unsupervised Kernel Regression. PhD thesis, Bielefeld University (2007)

    Google Scholar 

  4. Lawrence, N.: Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models. Machine Learning Research 6 (2005)

    Google Scholar 

  5. Meinicke, P., Klanke, S., Memisevic, R., Ritter, H.: Principal Surfaces from Unsupervised Kernel Regression. IEEE Trans. PAMI 27(9) (2005)

    Google Scholar 

  6. Nadaraya, E.A.: On Estimating Regression. Theory of Probability and Its Appl. (9) (1964)

    Google Scholar 

  7. Rizzolatti, G., Fabbri-Destro, M., Cattaneo, L.: Mirror neurons and their clinical relevance. Nat. Clin. Pract. Neuro. 5(1), 24–34 (2009)

    Article  Google Scholar 

  8. Steffen, J., Haschke, R., Ritter, H.: Towards Dextrous Manipulation Using Manifolds. In: Proc. Int. Conf. on Intelligent Robots and Systems, IROS (2008)

    Google Scholar 

  9. Steffen, J., Klanke, S., Vijayakumar, S., Ritter, H.: Realising Dextrous Manipulation with Structured Manifolds using Unsupervised Kernel Regression with Structural Hints. In: ICRA Workshop: Approaches to Sensorimotor Learning on Humanoid Robots (May 2009) (to appear)

    Google Scholar 

  10. Steffen, J., Klanke, S., Vijayakumar, S., Ritter, H.: Towards Semi-supervised Manifold Learning: UKR with Structural Hints. In: Proc. WSOM (June 2009) (ta)

    Google Scholar 

  11. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  12. Urtasun, R., Fleet, D., Geiger, A., Popovic, J., Darrell, T., Lawrence, N.: Topologically-Constrained Latent Variable Models. In: Proc. ICML (2008)

    Google Scholar 

  13. Watson, G.S.: Smooth Regression Analysis. Sankhya, Ser. A 26 (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Steffen, J., Pardowitz, M., Ritter, H. (2009). A Manifold Representation as Common Basis for Action Production and Recognition. In: Mertsching, B., Hund, M., Aziz, Z. (eds) KI 2009: Advances in Artificial Intelligence. KI 2009. Lecture Notes in Computer Science(), vol 5803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04617-9_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04617-9_76

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04616-2

  • Online ISBN: 978-3-642-04617-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics