Skip to main content

NetLearn: Social Network Analysis and Visualizations for Learning

  • Conference paper
Learning in the Synergy of Multiple Disciplines (EC-TEL 2009)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5794))

Included in the following conference series:

Abstract

The most valuable and innovative knowledge is hard to find, and it lies within distributed communities and networks. Locating the right community or person who can provide us with exactly the knowledge that we need and who can help us solve exactly the problems that we come upon, can be an efficient way to learn forward. In this paper, we present the details of NetLearn; a service that acts as a knowledge filter for learning. The primary aim of NetLearn is to leverage social network analysis and visualization techniques to help learners mine communities and locate experts that can populate their personal learning environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Polanyi, M.: The Tacit Dimension. Anchor books, New York (1967); based on the 1962 Terry lectures

    Google Scholar 

  2. Lave, J., Wenger, E.: Situated Learning. Legitimate Peripheral Participation. Cambridge University Press, New York (1991)

    Book  Google Scholar 

  3. Nonaka, I., Takeuchi, H.: The Knowledge-Creating Company: How Japanese Companies Create the Dynamics of Innovation. Oxford University, New York (1995)

    Google Scholar 

  4. Wenger, E.: Communities of Practice. Learning, Meaning and Identity. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  5. Siemens, G.: Knowing Knowledge. Lulu.com (2006)

    Google Scholar 

  6. Siemens, G.: Connectivism: Learning as network-creation (2005)

    Google Scholar 

  7. van Harmelen, M.: Personal learning environments (2006)

    Google Scholar 

  8. Anderson, C.: The Long Tail: Why the Future of Business is Selling Less of More. Hyperion (2006)

    Google Scholar 

  9. Chatti, M.A., Jarke, M., Frosch-Wilke, D.: The future of e-learning: a shift to knowledge networking and social software. International Journal of Knowledge and Learning 3(4/5), 404–420 (2007)

    Article  Google Scholar 

  10. Ichise, R., Takeda, H., Muraki, T.: Research community mining with topic identification. In: 10th International Conference on Information Visualisation, IV 2006, London, UK, July 5-7, pp. 276–281. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  11. McDonald, D.W.: Recommending collaboration with social networks: a comparative evaluation. In: Proceedings of the SIGCHI conference on Human factors in computing systems, Ft. Lauderdale, Florida, USA, pp. 593–600 (2003)

    Google Scholar 

  12. Zhang, J., Ackerman, M.S.: Searching for expertise in social networks: a simulation of potential strategies. In: Proceedings of the 2005 international ACM SIGGROUP conference on Supporting group work, pp. 71–80 (2005)

    Google Scholar 

  13. Zhang, J., Ackerman, M.S., Adamic, L.A.: Expertise networks in online communities: structure and algorithms. In: Williamson, C.L., Zurko, M.E., Patel-Schneider, P.F., Shenoy, P.J. (eds.) WWW, pp. 221–230. ACM, New York (2007)

    Chapter  Google Scholar 

  14. Kautz, H.A., Selman, B., Shah, M.A.: The hidden web. AI Magazine 18(2), 27–36 (1997)

    Google Scholar 

  15. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  16. Brandes, U., Kenis, P., Wagner, D.: Communicating centrality in policy network drawings. IEEE Transactions on Visualization and Computer Graphics 9(2), 241–253 (2003)

    Article  Google Scholar 

  17. Bertini, E.: Social networks visualization: A brief survey (2005)

    Google Scholar 

  18. Chatti, M.A., Muhammad, N.F., Jarke, M.: ALOA: A web services driven framework for automatic learning object annotation. In: Dillenbourg, P., Specht, M. (eds.) EC-TEL 2008. LNCS, vol. 5192, pp. 86–91. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Motoda, H. (ed.): Active mining: new directions of data mining. IOS Press, Amsterdam (2002)

    MATH  Google Scholar 

  20. Ichise, R., Takeda, H., Ueyama, K.: Community mining tool using bibliography data. In: Proceedings of the 9th International Conference on Information Visualisation, IV 2005, London, UK, July 6-8, pp. 953–958. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  21. Travers, J., Milgram, S.: An experimental study of the small world problem. Sociometry 32, 425–443 (1969)

    Article  Google Scholar 

  22. Mika, P.: Flink: Semantic web technology for the extraction and analysis of social networks. Journal Web Semantics 3(2-3), 211–223 (2005)

    Article  Google Scholar 

  23. Chan, S., Pon, R.K., Cardenas, A.F.: Visualization and clustering of author social networks. In: 2006 Distributed Multimedia Systems Conference, Grand Canyon, Arizona, August 30 - September 1, pp. 174–180 (2006)

    Google Scholar 

  24. McDonald, D.W., Ackerman, M.S.: Expertise recommender: a flexible recommendation system and architecture. In: CSCW, pp. 231–240 (2000)

    Google Scholar 

  25. Kautz, H.A., Selman, B., Shah, M.A.: Referral web: Combining social networks and collaborative filtering. Commun. ACM 40(3), 63–65 (1997)

    Article  Google Scholar 

  26. Sangüesa, R., Pujol, J.: Netexpert: A multiagent system for expertise location. In: Proceedings of Workshop on Organizational Memories and Knowledge Management in the 17th International Joint Conference on Artificial Intelligence, IJCAI 2001, Seattle, pp. 85–93 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chatti, M.A., Jarke, M., Indriasari, T.D., Specht, M. (2009). NetLearn: Social Network Analysis and Visualizations for Learning. In: Cress, U., Dimitrova, V., Specht, M. (eds) Learning in the Synergy of Multiple Disciplines. EC-TEL 2009. Lecture Notes in Computer Science, vol 5794. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04636-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04636-0_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04635-3

  • Online ISBN: 978-3-642-04636-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics