Skip to main content

General Correctness Algebra

  • Conference paper
Relations and Kleene Algebra in Computer Science (RelMiCS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5827))

Included in the following conference series:

Abstract

General correctness offers a finer semantics of programs than partial and total correctness. We give an algebraic account continuing and extending previous approaches. In particular, we propose axioms, correctness statements, a correctness calculus, specification constructs and a loop refinement rule. The Egli-Milner order is treated algebraically and we show how to obtain least fixpoints, used to solve recursion equations, in terms of the natural order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aarts, C.J.: Galois connections presented calculationally. Master’s thesis, Department of Mathematics and Computing Science, Eindhoven University of Technology (1992)

    Google Scholar 

  2. de Bakker, J.W.: Semantics and termination of nondeterministic recursive programs. In: Michaelson, S., Milner, R. (eds.) Automata, Languages and Programming: Third International Colloquium, pp. 435–477. Edinburgh University Press (1976)

    Google Scholar 

  3. Berghammer, R., Zierer, H.: Relational algebraic semantics of deterministic and nondeterministic programs. Theoretical Computer Science 43, 123–147 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  4. Broy, M., Gnatz, R., Wirsing, M.: Semantics of nondeterministic and noncontinuous constructs. In: Bauer, F.L., Broy, M. (eds.) Program Construction. LNCS, vol. 69, pp. 553–592. Springer, Heidelberg (1979)

    Chapter  Google Scholar 

  5. De Carufel, J.-L., Desharnais, J.: Demonic algebra with domain. In: Schmidt, R. (ed.) RelMiCS/AKA 2006. LNCS, vol. 4136, pp. 120–134. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Cohen, E.: Separation and reduction. In: Backhouse, R., Oliveira, J.N. (eds.) MPC 2000. LNCS, vol. 1837, pp. 45–59. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Desharnais, J., Möller, B., Struth, G.: Algebraic notions of termination. Report 2006-23, Institut für Informatik, Universität Augsburg (October 2006)

    Google Scholar 

  8. Desharnais, J., Möller, B., Struth, G.: Kleene algebra with domain. ACM Transactions on Computational Logic 7(4), 798–833 (2006)

    MathSciNet  Google Scholar 

  9. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  10. Dunne, S.: Recasting Hoare and He’s Unifying Theory of Programs in the context of general correctness. In: Butterfield, A., Strong, G., Pahl, C. (eds.) 5th Irish Workshop on Formal Methods. Electronic Workshops in Computing. The British Computer Society (July 2001)

    Google Scholar 

  11. Dunne, S., Galloway, A.: Lifting general correctness into partial correctness is ok. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 215–232. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Dunne, S., Hayes, I., Galloway, A.: Reasoning about loops in total and general correctness. In: Butterfield, A. (ed.) UTP 2008. LNCS. Springer, Heidelberg (to appear)

    Google Scholar 

  13. Ésik, Z., Leiß, H.: Algebraically complete semirings and Greibach normal form. Annals of Pure and Applied Logic 3(1-3), 173–203 (2005)

    Article  Google Scholar 

  14. Guttmann, W., Möller, B.: Modal design algebra. In: Dunne, S., Stoddart, B. (eds.) UTP 2006. LNCS, vol. 4010, pp. 236–256. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Guttmann, W., Möller, B.: Normal design algebra. Journal of Logic and Algebraic Programming (to appear)

    Google Scholar 

  16. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the ACM 12(10), 576–580/583 (1969)

    Article  MATH  Google Scholar 

  17. Hoare, C.A.R., He, J.: Unifying theories of programming. Prentice Hall Europe, Englewood Cliffs (1998)

    Google Scholar 

  18. Höfner, P., Möller, B.: An algebra of hybrid systems. Journal of Logic and Algebraic Programming 78(2), 74–97 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jacobs, D., Gries, D.: General correctness: A unification of partial and total correctness. Acta Informatica 22(1), 67–83 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Information and Computation 110(2), 366–390 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kozen, D.: On Hoare logic and Kleene algebra with tests. ACM Transactions on Computational Logic 1(1), 60–76 (2000)

    Article  MathSciNet  Google Scholar 

  22. Möller, B.: Lazy Kleene algebra. In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125, pp. 252–273. Springer, Heidelberg (2004)

    Google Scholar 

  23. Möller, B.: The linear algebra of UTP. In: Uustalu, T. (ed.) MPC 2006. LNCS, vol. 4014, pp. 338–358. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Möller, B., Struth, G.: WP is WLP. In: MacCaull, W., Winter, M., Düntsch, I. (eds.) RelMiCS 2005. LNCS, vol. 3929, pp. 200–211. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Nelson, G.: A generalization of Dijkstra’s calculus. ACM Transactions on Programming Languages and Systems 11(4), 517–561 (1989)

    Article  Google Scholar 

  26. von Wright, J.: Towards a refinement algebra. Science of Computer Programming 51(1-2), 23–45 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guttmann, W. (2009). General Correctness Algebra. In: Berghammer, R., Jaoua, A.M., Möller, B. (eds) Relations and Kleene Algebra in Computer Science. RelMiCS 2009. Lecture Notes in Computer Science, vol 5827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04639-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04639-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04638-4

  • Online ISBN: 978-3-642-04639-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics