Abstract
We define collagories essentially as “distributive allegories without zero morphisms”, and show that they are sufficient for accommodating the relation-algebraic approach to graph transformation. Collagories closely correspond to the adhesive categories important for the categorical DPO approach to graph transformation. but thanks to their relation-algebraic flavour provide a more accessible and more flexible setting.
This research is supported by the National Science and Engineering Research Council of Canada (NSERC).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barr, M., Wells, C.: Category Theory for Computing Science, 3rd edn. Centre de recherches mathématiques (CRM), Université de Montréal (1999)
Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic Approaches to Graph Transformation, Part I: Basic Concepts and Double Pushout Approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation. Foundations, ch. 3, vol. 1, pp. 163–245. World Scientific, Singapore (1997)
Ehrig, H., Padberg, J., Prange, U., Habel, A.: Adhesive High-Level Replacement Systems: A New Categorical Framework for Graph Transformation. Fund. Inform. 74(1), 1–29 (2006)
Freyd, P.J., Scedrov, A.: Categories, Allegories. North-Holland Mathematical Library, vol. 39. North-Holland, Amsterdam (1990)
Heindel, T., Sobociński, P.: Van Kampen Colimits as Bicolimits in Span. In: Kurz, A., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728. Springer, Heidelberg (to appear, 2009)
Kahl, W.: A Relation-Algebraic Approach to Graph Structure Transformation 2001. Habil. Thesis, Fakultät für Informatik, Univ. der Bundeswehr München, Techn. Report 2002-03 (2001), http://sqrl.mcmaster.ca/~kahl/Publications/RelRew/
Kahl, W.: Refactoring Heterogeneous Relation Algebras around Ordered Categories and Converse. J. Relational Methods in Comp. Sci. 1, 277–313 (2004)
Kahl, W.: Collagories for Relational Adhesive Rewriting. SQRL Report 56, Software Quality Research Laboratory, Department of Computing and Software, McMaster University (2009), http://sqrl.mcmaster.ca/sqrl_reports.html
Kawahara, Y.: Pushout-Complements and Basic Concepts of Grammars in Toposes. Theoretical Computer Science 77, 267–289 (1990)
Kozen, D.: A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events. Inform. and Comput. 110(2), 366–390 (1994)
Lack, S., Sobociński, P.: Adhesive Categories. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004)
Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. RAIRO Inform. Théor. Appl. 39(3), 511–545 (2005)
de Roever, W.-P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods and their Comparison. Cambridge Tracts Theoret. Comput. Sci, vol. 47. Cambridge Univ. Press, Cambridge (1998)
Schmidt, G., Ströhlein, T.: Relations and Graphs, Discrete Mathematics for Computer Scientists. EATCS-Monographs on Theoretical Computer Science. Springer, Heidelberg (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kahl, W. (2009). Collagories for Relational Adhesive Rewriting. In: Berghammer, R., Jaoua, A.M., Möller, B. (eds) Relations and Kleene Algebra in Computer Science. RelMiCS 2009. Lecture Notes in Computer Science, vol 5827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04639-1_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-04639-1_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04638-4
Online ISBN: 978-3-642-04639-1
eBook Packages: Computer ScienceComputer Science (R0)