Abstract
Following the representation theorems for relation algebras and cylindric algebras presented in [5] and [7] we develop discrete duality for relation algebras and relation frames, and for cylindric algebras and cylindric frames.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chin, L., Tarski, A.: Distributive and modular laws in the arithmetic of relation algebras. University of California Publications (1951)
De Morgan, A.: On the syllogism: IV, and on the logic of relations. Transactions of the Cambridge Philosophical Society 10, 331–358 (1864)
De Rijke, M., Venema, Y.: Salqvists theorem for Boolean algebras with operators with applications to cylindric algebras. Studia Logica 54, 61–78 (1995)
Düntsch, I., Orłowska, E.: A discrete duality between the apartness algebras and apartness frames. Journal of Applied Non-classical Logics 18(2-3), 209–223 (2008)
Düntsch, I., Orłowska, E., Radzikowska, A.: Lattice-based relation algebras II. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.) TARSKI 2006. LNCS (LNAI), vol. 4342, pp. 267–289. Springer, Heidelberg (2006)
Dzik, W., Orłowska, E., van Alten, C.: Relational representation theorems for general lattices with negations. In: Schmidt, R.A. (ed.) RelMiCS/AKA 2006. LNCS, vol. 4136, pp. 162–176. Springer, Heidelberg (2006)
Düntsch, I., Orłowska, E., Radzikowska, A., Vakarelov, D.: Relational representation theorems for some lattice-based structures. Journal of Relational Methods in Computer Science 1, 132–160 (2005)
Henkin, L., Monk, J.D., Tarski, A.: Cylindric Algebras. Part I, Part II. North Holland, Amsterdam (1971/1985)
Järvinen, J., Orłowska, E.: Relational correspondences for lattices with operators. In: MacCaull, W., Winter, M., Düntsch, I. (eds.) RelMiCS 2005. LNCS, vol. 3929, pp. 134–146. Springer, Heidelberg (2006)
Jónsson, B., Tarski, A.: Boolean algebras with operators. Part I: American Journal of Mathematics 73, 891–939 (1951), Part II: ibidem 74, 127–162 (1952)
Maddux, R.: Some varieties containing relation algebras. Transactions of the American Mathematical Society 272, 501–526 (1982)
Maddux, R.: Finite Integral Relation Algebras. Lecture Notes in Mathematics, vol. 1149, pp. 175–197 (1985)
Maddux, R.: Introductory course on relation algebras, finite-dimensional cylindric algebras, and their interconnections. In: Andreka, H., Monk, J.D., Nemeti, I. (eds.) Algebraic Logic (Proc. Conf. Budapest 1988). Colloq. Math. Soc. J. Bolyai, vol. 54, pp. 361–392. North-Holland, Amsterdam (1991)
Maddux, R.: Relation algebras. In: Abramsky, S., Artemov, S., Gabbay, D.M., et al. (eds.). Studies in Logic and the Foundations of Mathematics, vol. 150. Elsevier, Amsterdam (1996)
Maddux, R.: Relation algebras. In: Brink, C., Kahland, W., Schmidt, G. (eds.) Relational Methods in Computer Sciences. Advances in Computer Science. Springer, New York (1997)
Maksimova, L.L.: Pretabular superintuitionistic logics. Algebra and Logic 11(5), 558–570 (1972)
Maksimova, L.L.: Pretabular extensions of the Lewis’ logic S4. Algebra and Logic 14(1), 28–55 (1975)
Orłowska, E., Golinska-Pilarek, J.: Dual Tableaux: Foundations, Methodolody, Case Studies, Draft of the book (2009)
Orłowska, E., Rewitzky, I., Düntsch, I.: Relational semantics through duality. In: MacCaull, W., Winter, M., Düntsch, I. (eds.) RelMiCS 2005. LNCS, vol. 3929, pp. 17–32. Springer, Heidelberg (2006)
Orłowska, E., Radzikowska, A.: Relational representability for algebras of substructural logics. In: MacCaull, W., Winter, M., Düntsch, I. (eds.) RelMiCS 2005. LNCS, vol. 3929, pp. 212–224. Springer, Heidelberg (2006)
Orłowska, E., Radzikowska, A.: Representation theorems for some fuzzy logics based on residuated non-distributive lattices. Fuzzy Sets and Systems 159, 1247–1259 (2008)
Orłowska, E., Rewitzky, I.: Duality via Truth: Semantic frameworks for lattice-based logics. Logic Journal of the IGPL 13(4), 467–490 (2005)
Orłowska, E., Rewitzky, I.: Context algebras, context frames and their discrete duality. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 212–229. Springer, Heidelberg (2008)
Orłowska, E., Rewitzky, I.: Discrete duality and its applications to reasoning with incomplete information. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 51–56. Springer, Heidelberg (2007)
Orłowska, E., Rewitzky, I.: Algebras for Galois-style connections and their discrete duality (submitted, 2008)
Peirce, C.S.: Note B: the logic of relatives. In: Peirce, C.S. (ed.) Studies in Logic by Members of the Johns Hopkins University, pp. 187–203. Little, Brown, and Co., Boston (1883)
Priestley, H.A.: Representation of distributive lattices by means of ordered Stone spaces. Bulletin of the London Mathematical Society 2, 186–190 (1970)
Sahlqvist, H.: Completeness and correspondence in the first and second order semantics for modal logics. In: Kanger, S. (ed.) 3rd Skandinavian Logic Symposium, Uppsala, Sweden, 1973, pp. 110–143. North-Holland, Amsterdam (1975)
Stone, M.H.: The theory of representations for Boolean algebras. Transactions of the American Mathematical Society 40, 37–111 (1936)
Tarski, A.: On the calculus of relations. Journal of Symbolic Logic 6, 73–89 (1941)
Urquhart, A.: Duality for algebras of relevant logics. Studia Logica 56, 263–276 (1996)
Vakarelov, D., Orłowska, E.: Lattice-based modal algebras and modal logics. In: Hajek, P., Valds-Villanueva, L.M., Westerstahl, D. (eds.) Logic, Methodology and Philosophy of Science. Proceedings of the 12th International Congress, pp. 147–170. Kings College London Publications (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Orłowska, E., Rewitzky, I. (2009). Discrete Duality for Relation Algebras and Cylindric Algebras. In: Berghammer, R., Jaoua, A.M., Möller, B. (eds) Relations and Kleene Algebra in Computer Science. RelMiCS 2009. Lecture Notes in Computer Science, vol 5827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04639-1_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-04639-1_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04638-4
Online ISBN: 978-3-642-04639-1
eBook Packages: Computer ScienceComputer Science (R0)