Abstract
We present an algebraic approach to separation logic. In particular, we give algebraic characterisations for all constructs of separation logic. The algebraic view does not only yield new insights on separation logic but also shortens proofs and enables the use of automated theorem provers for verifying properties at a more abstract level.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Birkhoff, G.: Lattice Theory, 3rd edn., vol. XXV. American Mathematical Society, Colloquium Publications (1967)
Blyth, T., Janowitz, M.: Residuation Theory. Pergamon Press, Oxford (1972)
Conway, J.H.: Regular Algebra and Finite Machines. Chapman & Hall, Boca Raton (1971)
Dang, H.-H.: Algebraic aspects of separation logic. Technical Report 2009-01, Institut für Informatik (2009)
Dang, H.-H., Höfner, P., Möller, B.: Towards algebraic separation logic. Technical Report 2009-12, Institut für Informatik, Universität Augsburg (2009)
Desharnais, J., Möller, B.: Characterizing Determinacy in Kleene Algebras. Information Sciences 139, 253–273 (2001)
Dijkstra, E.: A discipline of programming. Prentice Hall, Englewood Cliffs (1976)
Ehm, T.: Pointer Kleene algebra. In: Berghammer, R., Möller, B., Struth, G. (eds.) RelMiCS 2003. LNCS, vol. 3051, pp. 99–111. Springer, Heidelberg (2004)
Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the ACM 12(10), 576–580 (1969)
Höfner, P., Struth, G.: Automated reasoning in Kleene algebra. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 279–294. Springer, Heidelberg (2007)
Huntington, E.V.: Boolean algebra. A correction. Transaction of AMS 35, 557–558 (1933)
Huntington, E.V.: New sets of independent postulates for the algebra of logic. Transaction of AMS 35, 274–304 (1933)
Jónsson, B., Tarski, A.: Boolean algebras with operators, Part I. American Journal of Mathematics 73 (1951)
Möller, B.: Towards pointer algebra. Science of Computer Prog. 21(1), 57–90 (1993)
Möller, B.: Calculating with acyclic and cyclic lists. Information Sciences 119(3-4), 135–154 (1999)
O’Hearn, P.: Resources, concurrency, and local reasoning. Theoretical Computer Science 375, 271–307 (2007)
O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that alter data structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 1–19. Springer, Heidelberg (2001)
O’Hearn, P.W., Reynolds, J.C., Yang, H.: Separation and information hiding. ACM Trans. Program. Lang. Syst. 31(3), 1–50 (2009)
Reynolds, J.C.: An introduction to separation logic. Proceedings Marktoberdorf Summer School (2008) (forthcoming)
Rosenthal, K.: Quantales and their applications. Pitman Research Notes in Mathematics Series 234 (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dang, HH., Höfner, P., Möller, B. (2009). Towards Algebraic Separation Logic. In: Berghammer, R., Jaoua, A.M., Möller, B. (eds) Relations and Kleene Algebra in Computer Science. RelMiCS 2009. Lecture Notes in Computer Science, vol 5827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04639-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-04639-1_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04638-4
Online ISBN: 978-3-642-04639-1
eBook Packages: Computer ScienceComputer Science (R0)